Сводный отчет по программе мониторинга Охотско-Корейской популяции серого кита у северо-восточного побережья острова Сахалин за 2002 -2010 гг.

(Summary of the joint Okhotsk-korean gray whale monitoring program findings, Sakhalin, Russian Federation, 2002 – 2010)
Формуляр документа

Наименование файла 0000-S-90-04-T-0366-00-R

<table>
<thead>
<tr>
<th>Дата</th>
<th>Выпуск</th>
<th>Разработчик</th>
<th>Ответственное лицо</th>
<th>Санкционирующее лицо</th>
<th>Консультанты</th>
<th>Рассылка</th>
</tr>
</thead>
<tbody>
<tr>
<td>Январь 2012</td>
<td>01</td>
<td>Ларин Роман</td>
<td>Алексей Владимиров</td>
<td>Ричард Эванс</td>
<td>Кун Брокер</td>
<td></td>
</tr>
</tbody>
</table>

Информация о внесении изменений в документ

<table>
<thead>
<tr>
<th>Ред.</th>
<th>Местонахождение изменений</th>
<th>Краткое описание изменений</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Первый выпуск документа</td>
<td></td>
</tr>
</tbody>
</table>

0000-S-90-04-T-0366-00-R Код ОМ: 17.03.07.03
СВОДНЫЙ ОТЧЕТ
ПО ПРОГРАММЕ МОНИТОРИНГА
ОХОТСКО-КОРЕЙСКОЙ ПОПУЛЯЦИИ
СЕРОГО КИТА У
СЕВЕРО-ВОСТОЧНОГО ПОБЕРЕЖЬЯ ОСТРОВА
САХАЛИН ЗА 2002-2010 гг.

2011 г.
Сведения по Программе мониторинга охотско-корейской популяции серого кита у северо-восточного побережья о. Сахалин за 2002-2010 гг.

СОДЕРЖАНИЕ

<table>
<thead>
<tr>
<th>Число</th>
<th>Раздел</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ВВЕДЕНИЕ</td>
</tr>
<tr>
<td>2</td>
<td>ЧТО МЫ УЗНАЛИ?</td>
</tr>
<tr>
<td>3</td>
<td>АКУСТИЧЕСКИЙ МОНИТОРИНГ</td>
</tr>
<tr>
<td>4</td>
<td>ИССЛЕДОВАНИЯ БЕНТОСА И КОРМОВОЙ БАЗЫ СЕРЫХ КИТОВ</td>
</tr>
<tr>
<td>5</td>
<td>ИЗУЧЕНИЕ ПОВЕДЕНИЯ СЕРЫХ КИТОВ ОХОТСКО-КОРЕЙСКОЙ ПОПУЛЯЦИИ</td>
</tr>
<tr>
<td>6</td>
<td>РАСПРЕДЕЛЕНИЕ И ЧИСЛЕННОСТЬ СЕРЫХ КИТОВ</td>
</tr>
</tbody>
</table>

6.1. Направления и задачи исследования ... 32
6.2. Станции и протокол наблюдений .. 33
 6.2.1. Работы ... 33
6.2.2. Протоколы наблюдений .. 34
6.3. Основные результаты ... 36
 6.3.1. Внутригодовые изменения в Пильтунском нагульном районе.................. 36
 6.3.2. Межгодовые изменения в использовании Пильтунского нагульного района китами ... 39
 6.3.3. Внутри- и межгодовые изменения в использовании Морского нагульного района китами ... 40
6.3.4. Киты на Аркутун-Дагинском и Пильтун-Астохском лицензионных участках ... 41

7. ФОТОИДЕНТИФИКАЦИОННЫЕ ИССЛЕДОВАНИЯ СЕРЫХ КИТОВ 42
 7.1. Направления и задачи исследования ... 42
 7.2. Методика фотоидентификации ... 42
 7.2.1. Методы полевых работ .. 42
 7.2.2. Лабораторные методы ... 43
 7.3. Основные результаты ... 43
 7.3.1. Каталоги серых китов ... 43
 7.3.2. Состояние популяции серых китов ... 44
 7.3.3. Использование ареала серыми китами ... 45
 7.3.4. Наблюдения за состоянием тела серых китов .. 46

8. ПЛАНЫ АНАЛИТИЧЕСКИХ РАБОТ .. 47

9. ЦИТИРУЕМАЯ ЛИТЕРАТУРА .. 49

10. Приложение А ... 56
11. Приложение Б ... 76
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа мониторинга охотско-корейской популяции серого кита у северо-восточного побережья о. Сахалин, осуществляется совместно компаниями Эксон Нефтегаз Лимитед (ЭНЛ) и «Сахалин Энерджи» (далее – Совместная программа мониторинга) с привлечением ведущих российских научно-исследовательских институтов направлена главным образом на мониторинг и исследования охотской-корейской или Западной Северотихоокеанской популяции серого кита (Eschrichtius robustus), далее - «охотско-корейская популяция серого кита». Начиная с 2002 г. сбор данных осуществляется в рамках следующих 5 компонентов: 1) акустический мониторинг, 2) исследования бентоса и кормовой базы китов, 3) исследования поведения серых китов, 4) исследования распределения и численности серых китов, и 5) фотоидентификационные исследования серых китов. Ежегодно Компании представили подробные отчеты с результатами выполнения Совместной программы мониторинга за прошедший полевой сезон в Минприроды России, Росприроднадзор, Росрыболовство и Правительство Сахалинской области. В настоящем отчете приводится общая информация по каждому компоненту Программы, в том числе: 1) направления и задачи исследования, 2) методология исследования, 3) сводные результаты. В разделе, озаглавленном «Что мы узнали?», даются ответы на часто задаваемые вопросы и приводятся основные выводы, которые могут быть сделаны по результатам исследований 2002-2010 гг. г. В целом, совместная программа мониторинга позволила получить ценные данные о состоянии серых китов охотско-корейской популяции, в том числе скорректировать в сторону увеличения расчетную численность китов (131-165 внесенных в каталог особей) и темпы роста популяции, а также подтвердить, что физическая кондиция индивидуальных животных улучшается в течение нагульного сезона у побережья о. Сахалин (считается, что 80-91% особей находятся в «хорошей кондиции» к концу периода наблюдения). Выявлены и охарактеризованы несколько нагульных районов (Пильтунский, Морской, и район у восточной Камчатки), проведены исследования предпочитительных видов кормовых организмов (амфипод и изопод) и дополнительные источники корма (песчанка). Проводился также мониторинг уровней звукового давления, связанного с различными производственными операциями (сейсмическая съемка, прокладка трубопроводов и строительство морских платформ), при этом незначительное превышение уровней звукового давления наблюдалось у станций мониторинга в Пильтунском и Морском районах (90% средних за 30 минут значений уровня акустических шумов, регистрируемых в течение полевого сезона, в 1/3 октавных диапазонах варьируют от 100 до 120 дБ отн. 1 мкПа², при отсутствии антропогенных шумов они обычно меньше 100 дБ отн. 1 мкПа²). Согласно данным наблюдений распределение и численность китов не коррелируются с конкретными производственными операциями. По всей видимости они более тесно связаны с наличием корма. Под руководством специалистов из Московского государственного университета им. М.В. Ломоносова был начат Комплексный статистический анализ с целью количественной оценки этих связей и изучения менее явных изменений, которые могли произойти вследствие повышенных уровней звукового давления, связанных как с отельными видами работ в Сахалинской области, так и с их суммарным воздействием.
1. ВВЕДЕНИЕ

Основной целью настоящей Программы является, выполнение мониторинговых исследований охотско-корейской популяции серого кита и среды обитания у северо-восточного шельфа о. Сахалин с привлечением ведущих российских научно-исследовательских институтов. В 2004 г. в рамках Совместной программы мониторинга начались исследования на восточном побережье Камчатки, и по мере возможности предпринимались экспедиции в другие районы. Совместная программа мониторинга ЭНЛ и «Сахалин Энерджи» позволила получить важную информацию о охотско-корейской популяции серых китов и их среде обитания, которая может применяться в целях оценки статуса популяции и разработки мер по снижению возможных воздействий, связанных с производственной деятельностью в рамках проектов «Сахалин-1» и «Сахалин-2».

1.1. НАПРАВЛЕНИЯ ИССЛЕДОВАНИЙ В РАМКАХ СОВМЕСТНОЙ ПРОГРАММЫ МОНИТОРИНГА

В настоящее время совместная программа мониторинга проводится по пяти основным направлениям, целью которых является сбор информации и получение ответов на приведенные выше вопросы. Эти направления перечислены ниже:

1. Мониторинг и исследования распространения звука в толще воды с целью изучения изменений фоновых шумов и уровней антропогенных сигналов, генерируемых во...
время проведения сейсморазведывательных исследований и производственной деятельностью в море и на берегу.

2. Исследования бентоса с целью изучения распределения корма и кормовой активности серых китов охотско-корейской популяции.

3. Изучение распределения и сравнительной плотности охотско-корейской популяции серых китов в нагульных районах с исследовательского судна и с берега.

4. Фотоидентификационные исследования с целью измерения состояния популяции, темпов воспроизводства и физической кондиции тела животных.

5. Береговые исследования поведения с целью обнаружения изменений в характере поведения отдельных китов.

миграции и районов зимовки охотско-корейской популяции серых китов, в настоящее время неизвестных, что позволит разработать специальные мероприятия по их защите.
Примечание: Исследования в рамках совместной программы мониторинга проводятся у северо- восточного побережья о. Сахалин (красный прямоугольник), некоторые работы по мониторингу ведутся также у восточного побережья полуострова Камчатка (главным образом в бухте Ольга).
1.2. НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЕ ИНСТИТУТЫ, УЧАСТВУЮЩИЕ В СОВМЕСТНОЙ ПРОГРАММЕ МОНИТОРИНГА

Компании ЭНЛ и «Сахалин Энерджи» всегда стремились привлекать ученых из ведущих российских научно-исследовательских институтов Дальнего Востока и Москвы. Институты и ведущие исследователи, участвующие в программе, перечислены ниже:

- Акустические исследования: Тихоокеанский океанологический институт им. В. И. Ильичева Дальневосточного отделения Российской академии наук, г. Владивосток (ТОИ ДВО РАН). Научный руководитель: д.ф.-м.н. А. Н. Рутенко
- Исследования бентоса: Институт биологии моря им. А.В. Жирмунского Дальневосточного отделения Российской академии наук (ИБМ ДВО РАН); Научный руководитель: к.б.н. В.И. Фадеев
- Исследования поведения: Техасский университет A&M в Галвестоне (TAMU) и Институт биологии моря им. А.В. Жирмунского Дальневосточного отделения Российской академии наук (ИБМ ДВО РАН). Научные руководители: Г. Гейли (G. Gailey) и О. Сыченко.
- Исследования распределения: Всероссийский научно-исследовательский институт рыбного хозяйства и океанографии (ВНИРО), г. Москва. Научный руководитель; к.б.н. В.А. Владимиров.
- Фотоидентификационные исследования: Институт биологии моря им. А.В. Жирмунского Дальневосточного отделения Российской академии наук, г. Владивосток (ИБМ ДВО РАН). Научные руководители: к.б.н. Ю.М. Яковлев, О.Ю. Тюренева

Сотрудничество между компаниями-операторами проектов «Сахалин-1», «Сахалин-2» и российскими научно-исследовательскими институтами позволило разработать новое оборудование и новые методы исследований. В ходе выполнения программы также были разработаны и представлены ежегодные отчеты для российских контрольно-надзорных органов; авторефераты, плакаты и доклады на национальных и международных симпозиумах; публикации в рецензируемых международные научные журналы. Также была выпущена книга с каталогом уникальных особей из охотско-корейской популяции серых китов, сфотографированных в период 2002-2005 гг., и кратким обзором их экологии (Тюренева и др. 2007). Перечень этих документов представлен в Приложения А. В то же время участники исследований следят за новыми научными публикациями и придерживаются национальных и международных стандартов проведения исследований морских млекопитающих и мест их обитания.

1.3. НАЗНАЧЕНИЕ СВОДНОГО ОТЧЕТА

Настоящий Сводный отчет подготовлен в соответствии с рекомендациями Федеральной службы по надзору в сфере природопользования (Письмо Росприроднадзора от 18.01.2011 № ВС-04-01-32/228), Федерального агентства рыболовству (Письмо Росрыболовства от 20.01.2011 № У04-58) и Межведомственной рабочей группы по обеспечению сохранения охотско-корейской популяции серого кита (Протокол заседания рабочей подгруппы МРГ от 20 декабря 2010г.). В отчете обобщены результаты исследований, выполненных в период с 2002 по 2010 гг. в рамках Совместной программы мониторинга...

охотско-корейской. Наибольший интерес для российских контрольно-надзорных органов, Компаний и международной научной общественности представляют сведения о том, в какой степени производственная деятельность воздейстует на поведение, распределение и численность, а также физическое состояние охотско-корейской популяции серых китов. Был выполнен многомерный статистический анализ данных о поведении китов, применительно к различным видам производственной деятельности для определенных лет, результаты которых обобщены в настоящем документе. В 2011 г. были начаты работы по комплексному анализу данных совместной программы мониторинга за 2002 – 2010 гг. направленным на интеграцию массивов данных и количественную оценку взаимосвязи между различными компонентами программы, а также с целью изучения воздействия производственной деятельности на распределение и численность китов. В настоящее время эти работы продолжаются, и их результаты в данный отчет не вошли.

Настоящий сводный отчет не ставит целью документально зафиксировать детальные методики или анализы отдельных видов исследований. Эта информация содержится в отчетах и докладах, перечисленных в Приложении А. Каждый раздел следует рассматривать как «обобщение пройденного», в том смысле, что в них изложены лишь основные моменты различных направлений программы, включая методы и важнейшие общие результаты. В первом разделе отчета, озаглавленном «Что мы узнали», приводятся несколько наиболее часто задаваемых вопросов о охотско-корейской популяции серых китов и совместной программе мониторинга.

1.4. СТРУКТУРА СВОДНОГО ОТЧЕТА

После 2002 г. в рамках совместной программы мониторинга был собран большой объем информации о охотско-корейской популяции серых китов. В главе 2 обобщаются сведения, полученные в результате Совместной программы мониторинга, в виде ответов на конкретные вопросы, представляющие интерес для Компаний, российских контрольно-надзорных органов и других заинтересованных сторон. В главах 3 - 7 настоящего сводного отчета представлен обзор каждого из пяти направлений мониторинга, включая задачи, методики сбора данных и краткие сводные результаты. В настоящее время ученые, участвующие в программе изучения и мониторинга охотско-корейской популяции серых китов, вместе с Компаниями сосредоточили свои усилия на интеграции результатов различных аспектов исследования при содействии специалистов по статистике и ученых из Московского государственного университета им. М.В. Ломоносова. Компании также продолжают изучать воздействие отдельных видов работ, выполнявшихся в 2009 и 2010 гг., на поведение, распределение и численность серых китов. Задачи и ход выполнения этих анализов описаны в главе 8.
2. ЧТО МЫ УЗНАЛИ?

Совместная программа мониторинга является одной из самых долгосрочных многопрофильных исследовательских программ, направленных на изучение конкретного района и одного конкретного вида морских млекопитающих. Как следует из более подробных данных о каждом виде работ по программе мониторинга, приведенных в главах с 3 по 7, мы получили значительный объем информации о различных аспектах жизнедеятельности охотско-корейской популяции серых китов во время ее пребывания в местах нагула. Эта глава обобщает результаты и новые знания, полученные нами за последние девять лет реализации совместной программы мониторинга.

В КАКОМ СОСТОЯНИИ НАХОДИТСЯ ПОПУЛЯЦИЯ?

- В начале 2000-х гг. считалось, что численность охотско-корейской популяции серых китов составляет не более 100 особей.
- Оценки численности популяции по данным фотоидентификации, выполненной американо-российской группой и группой фотоидентификации ИБМ, показали, что на 2009 г. численность популяции без учета детеньшей составила 131 особей (Cooke et al., 2010). Это на 10 особей больше, чем расчетная численность популяции в 2007 г. (121 особь: Cooke et al., 2007).
- Каталог фотоидентификации ИБМ содержит в общей сложности 187 особей серых китов охотско-корейской популяции. Из них 22 особи не были обнаружены повторно в недавнем прошлом (<3 лет), и их состояние неизвестно.
- Результаты исследований указывают на то, что в целом состояние популяции стабильное, численность растет, и популяция успешно самовоспроизводится.

ГДЕ КОРМЯТСЯ СЕРЫЕ КИТЫ ОХОТСКО-КОРЕЙСКОЙ ПОПУЛЯЦИИ?

- Данные, имевшиеся в 1990-е годы, позволяли предположить, что киты кормятся только в прибрежной зоне в Пильтунском районе, на глубинах менее 20 м.
что может объяснить, почему некоторые киты не были обнаружены каждый год в районе исследований.

- Первоначально считалось, что самки с детенышами кормятся только в Пыльгунском нагульном районе у устья залива Пыльгун. Однако, данные, полученные после 2002 г., свидетельствуют о том, что кормящиеся пары мать-детеныш находятся и в других местах Пыльгунского нагульного района и в бухте Ольга у восточного побережья Камчатки (первый детеныш отмечен там в 2008 г.). Тем не менее, устье залива Пыльгун по-видимому является излюбленным местом кормления самок с детенышами.

- Данные фотоидентификации показали, что отдельные особи китов перемещаются в течение года, а также от года к году из одного нагульного района в другой. Эти миграции наблюдаются между Морским и Пыльгунским районами, прибрежным районом Чайво, а также между Камчаткой и о. Сахалин (включая детенышей в 2009 г.).

КАКОВО СОСТОЯНИЕ ЗДОРОВЬЯ ПОПУЛЯЦИИ?

- В начале 2000-х годов были отмечены случаи появления истощенных китов, что вызвало озабоченность и считалось заслуживающим внимания вопросом, поскольку это связывалось с нарушенными условиями питания, обусловленным недостаточными кормовыми ресурсами или стрессом, которым животные подвергаются в результате сокращения потребления пищи. Мы узнали об истощенных китах следующее:

 - Существуют разные уровни истощения, характеризуемые 5 классами физической кондиции (от 0 до 4).
 - С 2002 по 2010 гг. примерно 10 - 20% китов, наблюдаемых в местах нагула у о. Сахалин, были истощены (класс физической кондиции 2, 3 или 4).
 - Некоторые истощенные киты являются самками с новыми детенышами, зарегистрированными в начале нагульного сезона.
 - В ходе нагульного сезона физическая кондиция большинства китов улучшается, и к концу нагульного сезона приблизительно 80 - 91% наблюдаемых китов находятся в нормальном состоянии (класс физической кондиции 0 или 1).

- Ежегодно наблюдается аномальное состояние кожи (слущивание), однако оно, по-видимому, не влияет на поведение или характер кормления серых китов.

- Причины этого аномального состояния кожи неясны.

ЧЕМ ПИТАЮТСЯ СЕРЫЕ КИТЫ ОХОТСКО-КОРЕЙСКОЙ ПОПУЛЯЦИИ И НАСКОЛЬКО СТАБИЛЬНА ИХ КОРМОВАЯ БАЗА?

- Основным источником пищи для охотско-корейской популяции серых китов являются ракообразные (амфиоподы и изоподы), а дополнительным источником пищи является мелкая рыба тихоокеанская песчанка (Ammodontes hexapterus). Невысок, каково какое значение имеют мизиды и личинки фарфоровых крабов в кормовой базе охотско-корейской популяции серых китов (они играют большую роль в питании группы серых китов восточной популяции, кормящихся у берегов о. Ванкувер).
• Биомасса амфипод в Пильтунском нагульном районе достигает максимума в прибрежной зоне на глубинах от 5 до 15 м и резко снижается на глубинах свыше 20 м. Биомassa колеблется от года к году, и некоторые изменения являются статистически значимыми. Средние значения биомассы находятся в диапазоне 28.5-47.4 г/м².
• Основным видом кормовых организмов в Морском нагульном районе считаются амфиподы *Amphelisca eschrichtii*. Средняя биомасса амфипода (р.*Ampelisca*) в Морском нагульном районе не меняется от года к году в статистически значимых пределах. В Морском нагульном районе кормление китов наблюдается на участках, где биомасса амфипод превышает 200 г/м².
• Песчанка является временным членом бентосного сообщества и дополнительным источником корма для серых китов. Наиболее плотные скопления зарегистрированы в северной и средней частях Пильтунского района на глубинах свыше 20 м (68-236 г/м² в 2004 и 2005 гг.).

ЧТО МЫ ЗНАЕМ О РАСПРЕДЕЛЕНИИ И ЧИСЛЕННОСТИ СЕРЫХ КИТОВ?
• Распределение и численность китов в Пильтунском и Морском нагульных районах изменяются от года к году.
 • Прибрежная зона вблизи устья залива Пильтун и около 15 км к северу характеризуется наиболее постоянными значениями плотности китов. Киты наблюдаются здесь ежегодно в сравнительно большом количестве.
• Численность китов в Морском районе обычно достигает пика в сентябре-октябре, вероятно по причине снижения численности кормовых организмов в Пильтунском районе к концу нагульного сезона.
• Появление китов на глубинах свыше 20 м в северной части Пильтунского нагульного района в 2004 и 2005 гг. совпадало с высокой плотностью песчанки в этом районе в эти годы. В то же время численность китов в Морском районе была низкой, что позволяет предположить, что распределение китов зависело от наличия корма.

КАКОВЫ ФОНОВЫЕ УРОВНИ ШУМА В НАГУЛЬНЫХ РАЙОНАХ И В КАКИХ ПРЕДЕЛАХ ОНИ ИЗМЕНЯЮТСЯ?
• Фоновые уровни шума существенно колеблются и могут достигать 100 дБ отн. 1 мкПа² во время штормов.

КАКОВ ВКЛАД ПРОМЫШЛЕННЫХ ШУМОВ В ОБЩИЕ ФОНОВЫЕ УРОВНИ ШУМА?
• Мониторинг шумов от производственной деятельности проводился в ряде точек в акватории Пильтунского и Морского нагульных районов. Выполнение работ обычно повышало уровни звукового давления в области низких частот (2-630 Гц) до уровня 100-120 дБ отн. 1 мкПа в точках, расположенных наиболее близко к районам работ.
• Основными источниками антропогенных шумов в ходе строительных работ являются суда.
Акустические данные, собранные на сегодняшний день, позволили разработать, откалибровать и опробовать численную модель распространения шумов от различных источников (например, сейсморазведочных работ, забивания свай) в пределах нагульного района.

ОКАЗЫВАЕТ ЛИ ДЕЯТЕЛЬНОСТЬ, СВЯЗАННАЯ С РАЗРАБОТКОЙ МЕСТОРОЖДЕНИЙ НЕФТИ И ГАЗА, ОТРИЦАТЕЛЬНОЕ ВОЗДЕЙСТВИЕ НА КИТОВ?

- Концентрации загрязняющих веществ (например, углеводородов) в донных отложениях соответствуют фоновым уровням.
- Многомерный статистический анализ данных о поведении китов в ходе сейсморазведочных работ (2001 г.) указывает на то, что при более высоких уровнях воздействия звуковой энергии киты перемещались быстрее, реже меняли направление движения, держались дальше от берега и оставались под водой дольше между вдохами. Эти изменения были относительно незначительны и не оказывали видимого негативного воздействия на состояние популяции. Параметры поведения китов остались стабильными на протяжении всего периода исследований.
 - Максимальное число детенышей (10) было зарегистрировано в 2003 г., через два года после проведения сейсморазведочных работ.
 - Численность популяции, рассчитанная по данным фотоидентификации, увеличилась приблизительно на 3 %.
- Многомерный статистический анализ данных о поведении китов во время монтажа бетонного ОГТ (основания гравитационного типа) для морской платформы в 2005 г. показал, что при повышенных уровнях акустических шумов киты уходят дальше от берега. Во время строительства трубопровода в 2006 г. было зарегистрировано сокращение дыхательных интервалов китов в периоды повышенных уровней акустических шумов. На сегодня остается затруднительным определить, насколько значимы для популяции серых китов эти статистически значимые краткосрочные незначительные изменения параметров поведения.
- Тот факт, что изменения параметров поведения серых китов в местах нагула возникают при наличии антропогенных шумов, подчеркивает важность дальнейшего внимательного мониторинга охотско-корейской популяции серых китов для обнаружения дальнейших возможных изменений.

КАКИМ ОБРАЗОМ КОМПАНИИ ИСПОЛЬЗОВАЛИ ПОЛУЧЕННЫЕ ДАННЫЕ ОБ ЭКОЛОГИИ ОХОТСКО-КОРЕЙСКОЙ ПОПУЛЯЦИИ СЕРЫХ КИТОВ ПРИ ОСУЩЕСТВЛЕНИИ МОРСКИХ ОПЕРАЦИЙ ПО ПРОЕКТАМ?

- На основе накапливаемых знаний об экологии и поведении серых китов охотско-корейской популяции Компании смогли разработать и реализовать Планы защиты морских млекопитающих (ПЗММ), содержащие меры снижения воздействия (например, навигационные коридоры, ограничения скорости судов и т.д.) для защиты серых китов охотско-корейской, которые должны выполняться судами компаний и всех

подрядчиков, выполняющих работы вблизи районов нагула серых китов охотско-корейской популяции.

- На судах, эксплуатируемых Компаниями у северо-восточного побережья Сахалина, имеются Наблюдатели за морскими млекопитающими (НММ), обученные специалистами по ПЗММ определению морских млекопитающих, включая серых китов охотско-корейской популяции. Наблюдатели осуществляют надзор за выполнением всех требований ПЗММ и следят за тем, чтобы серые киты охотско-корейской популяции не подвергались риску в результате выполнения работ Компаниями.

- Персонал Компаний и подрядчики, работающие на судах у северо-восточного побережья Сахалина, проходят обучение по требованиям Компаний, касающимся защиты морских млекопитающих, включая охотско-корейскую популяцию серых китов.

- Выполняется ежедневный контроль выполнения ПЗММ, причем НММ отчитываются перед береговым координатором о проведенных наблюдениях за морскими млекопитающими и выполнении требований ПЗММ, включая и требований по защите серых китов охотско-корейской популяции.
3. АКУСТИЧЕСКИЙ МОНИТОРИНГ

В связи с расширением производственной деятельности в экологически чувствительных районах морей и океанов в 1970-х годах в научном сообществе возникли опасения относительно возможного воздействия антропогенных шумов на популяции морских млекопитающих. Компании ЭНЛ и «Сахалин Энерджи» учли возможность того, что антропогенные шумы, возникающие в ходе различных видов работ на этапах разведки и освоения нефтегазовых месторождений, таких как сейсмические съемки и забивка фундаментных свай, могут повлиять на находящуюся на грани исчезновения западную (Охотско-Корейскую) популяцию серых китов. В 1999 г. были проведены целевые акustические исследования в районе о. Сахалин в рамках подготовки к разработке месторождения нефти и газа вблизи Пильгунского нагульного района. В 2003 г. была начата программа ежегодного акустического мониторинга с помощью автономных подводных акустических регистраторов (АПАР) устанавливаемых в характерных точках на северо-восточном шельфе о. Сахалин (в Пильгунском и Морском нагульных районах), являющаяся составной частью совместной программы мониторинга охотско-корейской популяции серых китов компанией ЭНЛ и «Сахалин Энерджи».

Основными задачами акустических исследований являются: регистрация уровней фоновых и антропогенных шумов на границах и внутри районов нагула серых китов, сбор батиметрических и гидрологических данных, необходимых для моделирования распространения звука от потенциальных индустриальных источников (установка и работа газо-нефтедобывающей платформы, строительство подводного трубопровода и т.п.) в районы нагула серых китов и построенные численных моделей, позволяющих рассчитывать уровни шумов, генерируемых существующими и планируемыми индустриальными источниками на границах и внутри районов нагула охотско-корейской

3.1. НАПРАВЛЕНИЯ И ЗАДАЧИ ИССЛЕДОВАНИЙ

1. Регистрация в частотном диапазоне 2-15000 Гц акустических шумов в ряде точек, расположенных на границах и внутри Пильгунского и Морского нагульных районов, а также в контрольной точке расположенной к северу от Пильгунского нагульного района. Эти работы начались в 2003 г. и с тех пор проводятся ежегодно.
 ○ Анализ временных вариаций (внутри-, межгодовых) акустических шумов в заданных точках на шельфе о. Сахалин. Количественная оценка изменений уровней фонового акустического шума в разных погодных условиях (включая прохождение циклонов).

2. Регистрация батиметрических и гидрологических данных (скорость звука, температура и соленость воды). Эти данные собирались с 2004 по 2010 г.
 ○ Количественная оценка параметров окружающей среды, влияющих на распространение звука, необходимых для корректного численного моделирования распространения звука в данной акватории.

3. Специальные акустические измерения в местах проведения Компаниями работ: монтаж платформы ПА-Б, строительство трубопроводов, забивка свай, сейсмическая
съемка. Эти исследования проводились только в те годы, когда выполнялись соответствующие работы.

- Мониторинг акустических шумов в дополнительных точках с целью контроля, в том числе в реальном времени, уровней антропогенных шумов в районах кормления серых китов и определения зон потенциального повышенного акустического воздействия от отдельных видов работ
- Использование акустических данных, собранных в ходе выполнения работ, и данных о поведении серых китов в целях углубленного изучения возможных воздействий разведочных и строительных работ на западную популяцию серых китов (см. обобщение результатов в гл. 4).

3.2. ТОЧКИ АКУСТИЧЕСКОГО МОНИТОРИНГА

Акустический мониторинг в рамках совместной программы мониторинга охотско-корейской популяции серых китов, осуществляемой компаниями ЭНЛ и «Сахалин Энерджи», выполнялся с применением автономных подводных акустических регистраторов (АПАР), разработанных в Тихоокеанском океанологическом институте (ТОИ) ДВО РАН специально для совместной программы акустического мониторинга компаний ЭНЛ и «Сахалин Енерджи».

В 2003 г. были разработаны план и методика проведения ежегодных акустических измерений в ряде точек акустического мониторинга на северо-восточном шельфе о. Сахалин. Пространственное расположение точек акустического мониторинга было выбрано с целью регистрации вариаций акустического поля на северо-восточном шельфе о. Сахалин, вызываемых антропогенными шумами, способными привести к значительному увеличению интегральных уровней шумов как в Пильтунском, так и в Морском районе нагула серых китов. Распределение западной популяции серых китов в Пильтунском районе меняется в зависимости от глубины, при этом большинство китов кормятся на глубинах 8-15 м, а пары матер-детеныш наблюдались преимущественно на глубинах 5-10 м. Таким образом, в пределах Пильтунского района, наиболее важные точки акустического мониторинга расположены на 20 м изобате, которая считается восточной границой и 10 м изобате, являющейся центром зоны распределения китов. Расположение станций остается практически неизменным с 2003 г. Карта северо-восточного шельфа о. Сахалин с указанием расположения точек акустического мониторинга представлена на рис. 2.1. Эта программа была разработана с целью изучения временных и пространственных вариаций амплитудных и частотных характеристик фоновых и антропогенных шумов на границах Пильтунского и Морского районов нагула серых китов.

Для проведения инструментальных измерений в рамках программы мониторинга в 2003 г. в ТОИ ДВО РАН были разработаны и изготовлены шесть автономных подводных акустических регистраторов (АПАР) (Борисов и др. 2004).

В последующие годы АПАР были модернизированы в целях повышения надежности и длительности их автономной работы в море (за счет увеличения энергоемкости источников питания и объемов жестких дисков). Начиная с 2006 г. для акустического мониторинга на северо-восточном шельфе о. Сахалин применялось 16 АПАР. В 2007 г. все АПАР были оснащены акустическими размыкателями, исключившими передачу механических вибраций.

от поверхностного буя и возможность несанкционированного подъема АПАР. Соответственно, в 2007-2008 г. г. не было утрачено ни одного АПАР. В 2009 и 2011 г. г. в Морском районе были потеряны два АПАР из-за их попадания в донный трал рыболовного судна. Кроме того, автономные акустические измерения прерывались по техническим причинам, а так же из-за затекания донного контейнера. В связи с этим объем зарегистрированных данных оказался несколько меньше запланированного, и практически в каждой точке мониторинга в отдельные периоды данные регистрировались с перерывами (см. график установки АПАР в табл. 2.1).

Таблица 2.1. Число дней, в которые проводились измерения в точках акустического мониторинга

<table>
<thead>
<tr>
<th>Название станции</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контрольная</td>
<td>4</td>
<td>13</td>
<td>29</td>
<td>52</td>
<td>51</td>
<td>41</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Пов-север (A10)</td>
<td>31</td>
<td>10</td>
<td>18</td>
<td>18</td>
<td>36</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Пов-Одопту (A9)</td>
<td>26</td>
<td>17</td>
<td>33</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Одопту-С-10</td>
<td>6</td>
<td>32</td>
<td>26</td>
<td>39</td>
<td>53</td>
<td>63</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Одопту-С-20</td>
<td>32</td>
<td>43</td>
<td>35</td>
<td>50</td>
<td>73</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Одопту-Ю-20</td>
<td>6</td>
<td>32</td>
<td>50</td>
<td>51</td>
<td>45</td>
<td>83</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Одопту-Ю-10</td>
<td>5</td>
<td>15</td>
<td>17</td>
<td>44</td>
<td>36</td>
<td>29</td>
<td>72</td>
<td>49</td>
</tr>
<tr>
<td>Одопту-ПА-Б</td>
<td>70</td>
<td>75</td>
<td>39</td>
<td>47</td>
<td>26</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ПА-Б-20</td>
<td>12</td>
<td>56</td>
<td>78</td>
<td>63</td>
<td>37</td>
<td>72</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>ПА-Б-10</td>
<td>12</td>
<td>20</td>
<td>46</td>
<td>71</td>
<td>52</td>
<td>39</td>
<td>72</td>
<td>48</td>
</tr>
<tr>
<td>Пильтун</td>
<td>5</td>
<td>13</td>
<td>67</td>
<td>65</td>
<td>61</td>
<td>48</td>
<td>58</td>
<td>48</td>
</tr>
<tr>
<td>Моликпак</td>
<td>58</td>
<td>44</td>
<td>48</td>
<td>55</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Пильтун-Ю</td>
<td>6</td>
<td>67</td>
<td>73</td>
<td>43</td>
<td>59</td>
<td>61</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Орлан</td>
<td>28</td>
<td>62</td>
<td>58</td>
<td>50</td>
<td>50</td>
<td>29</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Аркутун-Даги</td>
<td>36</td>
<td>48</td>
<td>42</td>
<td>53</td>
<td>25</td>
<td>29</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Лунское</td>
<td>3</td>
<td>15</td>
<td>61</td>
<td>54</td>
<td>67</td>
<td>53</td>
<td>51</td>
<td></td>
</tr>
</tbody>
</table>

3.3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Анализ акустических данных показал, что уровни фоновых шумов сильно варьировали и зависели главным образом от природных факторов, таких как скорость ветра, высота волн и осадки. Анализ также показал, что антропогенные шумы, генерируемые производственной деятельностью в рамках проектов «Сахалин-1» и «Сахалин-2» приводили к временному повышению уровней акустических шумов в пределах районов нагула серых китов и у их границ, по сравнению с уровнем естественного фона (табл. 2.2). Эти работы, как правило, велись в течение ограниченного времени и продолжались лишь в течение части летнего и осеннего сезонов. В большинстве случаев с прекращением производственной деятельности уровни шумов возвращаются к величинам, наблюдавшимся до начала строительства. В зависимости от погодных условий уровни акустических шумов по
завершении строительства иногда были несколько ниже или выше фоновых уровней, измеренных до начала строительства. Результаты, полученные в ходе этой программы мониторинга, применяются для оценки вариаций уровней шумов, создаваемых работами по проектам «Сахалин-1» и «Сахалин-2» (строительство и добыча) и при необходимости разработки мер по снижению антропогенных воздействий. Помимо шумов, обусловленных производственной деятельностью по проектам «Сахалин-1» и «Сахалин-2», при анализе акустических данных за несколько лет регистрировались также шумы, создаваемые работой других операторов (особенно при двух- и трехмерной сейсмической съемке). Например, антропогенные шумы от производственной деятельности в рамках проектов «Сахалин-1» и «Сахалин-2», не доходили до контрольной станции акустического мониторинга расположенной на севере (см. рис. 2.1), однако, в этой точке наблюдались непрерывные шумы и акустические импульсы, генерируемые во время проведения сейсмоакустических исследований и других работ в рамках проекта «Сахалин-5». Полная информация о результатах ежегодных измерений в точках ежегодного акустического мониторинга приведена в отчете «Анализ акустических измерений выполненных в Пильгунском и Морском районах нагула серых китов на северо-восточном шельфе о. Сахалин в полевые сезоны 2003-2009 гг.» представленном компаниями ЭНЛ и «Сахалин Энерджи» в Минприроды России (Рутенко и др. 2011).

Таблица 2.2. Уровни акустических шумов, создаваемых отдельными видами производственной деятельности компаний ЭНЛ и «Сахалин Энерджи» (либо других компаний).

<table>
<thead>
<tr>
<th>Вид деятельности (оператор)</th>
<th>Год</th>
<th>Станция (станции), где измерялся уровень звукового давления</th>
<th>Частота (Гц), макс. уровни в дБ (отн. 1 мПа²) для 90% значений</th>
<th>Уровень фонового шума звука (Гц), макс. уровни в дБ (отн. 1 мПа²) для 90% значений</th>
</tr>
</thead>
<tbody>
<tr>
<td>«Сахалин-5» Трехмерная сейсмическая съемка (неизвестен)</td>
<td>2009*</td>
<td>Контрольная</td>
<td>25-200, 120</td>
<td></td>
</tr>
<tr>
<td>Забивка свай на СБП Одопту (ЭНЛ)</td>
<td>2009*</td>
<td>А9 Одопту-С-10 Одопту-С-20</td>
<td>2-200; 110 32-158, 109 13-158, 110</td>
<td>>20, <95 >20, 95</td>
</tr>
<tr>
<td>Монтаж платформы ПА-Б и строительство трубопроводов (СЭИК)</td>
<td>2005-2007</td>
<td>Одопту-Ю-20 Одопту-Ю-10 Одопту-ГА-Б ПА-Б-20 ПА-Б-10 Молпак Пильтун-Ю Орлан</td>
<td>100-300, 100 200-500, 108 63-600, 100 63-79, 115 >50, 110 60-400, 110 60-400, 105 100-631, 109</td>
<td>>16, <93* >20, <90*</td>
</tr>
<tr>
<td>Сейсмическая съемка у побережья о. Сахалин (неизвестен)</td>
<td>2007</td>
<td>Аркутун-Даги ГКЗ</td>
<td>158, 105 158, 108</td>
<td>>32, <95* >10, <100</td>
</tr>
</tbody>
</table>

* Основано на статистическом анализе спектральной плотности мощности в 1/3- октавных частотных диапазонах* Приближение основано на процентильных графиках спектральной плотности мощности шумов измеренных в 1/3- октавных частотных диапазонах в соответствующей точке мониторинга (см. Рутенко и др., 2011)
* В 2009 г. работы по забивке свай велись с 15 июня по 14 сентября. Сейсмические исследования на лицензионном участке «Сахалин-5» (август-сентябрь) прекращались по времени с этими работами.
* В 2008 г. (данные этого года использовались для расчета фонового шума) на обеих станциях регистрировался устойчивый узкополосный акустический сигнал, который, по всей вероятности, создавался оборудованием, работающим на платформе ПА-Б.

Эксон Нефтегаз Лимитед 16 Сахалин Энерджи Инвестмент Компани, Лтд.
В 2010 году были проведены эксперименты по изучению затухания звука при распространении вдоль заданных профилей в районах проведения регулярного акустического мониторинга. Полученные результаты используются для построения численных моделей, позволяющих количественно оценить потери при распространении шумов на разных частотах при заданном расположении источников и приемников звука. При построении и калибровке моделей использовались собранные данные о гидрологии и батиметрии исследуемого района. Графики, иллюстрирующие потери звука при распространении в данной акватории, представлены в акустическом разделе отчета 2011 года, представленного в Минприроды России.

Рис. 2.1 Карта северо-восточного шельфа о. Сахалин с расположением нефте- и газодобывающих платформ (показаны красным цветом) и точек установки АПАР 2003-2009 гг.
4. ИССЛЕДОВАНИЯ БЕНТОСА И КОРМОВОЙ БАЗЫ СЕРЫХ КИТОВ

Основной задачей исследований бентоса является регистрация возможных изменений распределения и численности бентосных видов в двух известных районах нагула серых китов и их окрестностях, а также в местах кормления серых китов. Эта информация важна для понимания влияния наличия корма на распределение и перемещения серых китов. Она также используется для определения степени воздействия производственной деятельности по добыче нефти и газа на наличие и доступность кормовых ресурсов. В рамках исследований бентоса выполнялись различные работы, направленные на решение этой основной задачи, как изложено в п. 4.1.

4.1. НАПРАВЛЕНИЯ И ЗАДАЧИ ИССЛЕДОВАНИЯ

1. Отбор проб бентоса и донных отложений в двух известных районах нагула серых китов и их окрестностях (Пильтунский и Морской нагульные районы). Эти работы начаты в 2002 г. и после этого проводятся ежегодно. Ниже перечислены конкретные задачи:

 ○ Количественно охарактеризовать видовой состав и численность бентосных видов (плотность поселения и биомасса) отдельных таксономических групп и наиболее распространенных видов.
 ○ Количественно охарактеризовать состав и распределение донных отложений, оценить влияние гранулометрического состава на продуктивность и состав бентоса.
 ○ Определить годовые изменения распределения и численности бентоса в пределах нагульных районов и оценить влияние гидрологических параметров на их продуктивность и состав.

2. Количественная характеристика концентраций особо опасных загрязняющих веществ (таких как нефтяные углеводороды, тяжелые металлы и хлорорганические пестициды) в пробах донных отложений и тканях гидробионтов (полихет) в районах нагула серых китов.

3. Отбор проб бентоса, эпинектоса, планктона и донных отложений в точках питания серых китов. Эти работы начаты в 2002 г. и с тех пор проводятся ежегодно. Ниже перечислены конкретные задачи:

 ○ Определить, какие кормовые виды предпочитаются серыми китами и количественно охарактеризовать видовой состав и численность (плотность поселения и биомассу) этих видов в точках питания.
 ○ Количественно охарактеризовать состав донных отложений и их распределение в точках питания серых китов, а также оценить влияние гранулометрического состава донных отложений на продуктивность и видовой состав кормовых организмов серых китов.
о Определить межгодовые изменения распределения и численности кормовых организмов серых китов и оценить влияние гидрологических параметров на их продуктивность и состав.
4. Отбор проб бентоса в начале и конце сезона в выбираемых по мере возможности станциях в пределах районов нагула серых китов (главным образом при установке и снятии станций акустического мониторинга). Эти работы начаты в 2007 г. и с тех пор проводятся ежегодно. Их задача указана ниже:
о Оценить размерный состав и темпы роста доминирующих видов амфипод и изопод в течение сезона на основе морфометрического анализа.
5. Отбор проб бентоса и планктона в выбранных местах в заливе Пильтун, в прибрежной зоне Пильтунского нагульного района, и в Морском нагульном районе. Эти работы выполнялись в 2006-2008 гг. чтобы проанализировать состав изотопных и молекулярных биомаркеров (липидов) для определения важности залива Пильтун для продуктивности бентоса в Пильтунском нагульном районе.

4.2. СТАНЦИИ ОТБОРА ПРОБ

Исследования бентоса были спланированы на основе двух типов станций отбора проб бентоса и донных отложений: (i) станции, расположенные в ячейках сетки заранее определенной для трех районов (Пильтунский, Промежуточный Морской) (рис. 1); и (ii) станции, взятые в местах, где наблюдались кормящиеся киты, т.е. в точках питания. Отбор проб по установленной сетке выполняется с целью регистрации изменений в составе донных отложений и видовом составе и численности бентоса с течением времени. Отбор проб в точках питания серых китов выполняется с целью определения кормовых видов, которые предпочитают серые киты, их распределения по размерам и биомассе, а также с целью отслеживания изменений этих параметров с течением времени. В этом разделе приводится краткая характеристика районов, в которых в течение нескольких лет проводился отбор проб по сетке станций и отбор проб в точках питания. Детальное описание протокола пробоотбора и лабораторных анализов в этот обзор не включены, с ними можно ознакомиться в годовом отчете (Фадеев, 2011 – Том 1).

4.2.1. Пильтунский нагульный район

Сетка отбора проб в Пильтунском нагульном районе состоит из 60 ячеек равной площади, которые составляют пять блоков по 12 ячеек в каждом; три ячейки в направлении от севера на юг и четыре ячейки в направлении с востока на запад (рис. 3.1). Общая площадь сети отбора проб Пильтунского нагульного района составляет около 1000 км². Ежегодно с 2002 по 2010 гг. производился отбор проб бентоса и донных отложений из каждой из этих 60 ячеек сети, либо в случайно выбираемых в пределах ячейки точках, либо в местах, где отбирались пробы в предыдущие годы. Глубина отбора проб в этом районе изменялась от 5 до 35 м.

4.2.2. Морской нагульный район

Сетка отбора проб в Морском районе первоначально была разделена на 36 секторов (четыре ряда по девять ячеек), каждая размером около 50 км² (рис. 4.1). В 2002 и 2003 гг. в

4.2.3. Промежуточный район

Начиная с 2006 г. кормящиеся у берега киты регулярно наблюдались на небольшом участке в Промежуточном районе, расположенном между Пильтунским и Морским нагульными районами (рис. 4.1). Отбор проб в нескольких точках этого небольшого участка (30 км²) был начат в 2006 г. и повторно проведен в 2007–2010 гг. Этот участок, находящийся примерно в 40 км к югу от устья залива Пильтун, был назван Чайвинским подрайоном. Отбор проб бентоса, эпипланктон и планктон производился каждый год в одних и тех же семи точках для анализа изменения состава и численности видов кормовых организмов серых китов.

4.2.4. Точки питания серых китов

Пробы бентоса, эпипланктон и планктон отбирались в точках, где наблюдались кормящиеся серые киты, в пределах Пильтунского и Морского нагульных районов и на прилегающих акваториях. В июле 2009 и 2010 гг. пробы бентоса, эпипланктон и планктон также отбирались в бухте Ольга у восточного побережья Камчатки в 16 точках, где были замечены кормящиеся серые киты Ольга (рис. 1.1). Серые киты в бухте Ольга кормятся на глубинах от 6 до 13 м. Помимо этого, проводился отбор в двух точках в бухте Ольга, но в местах, где кормящихся серых китов не наблюдалось.
4.3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

4.3.1. Состав и обилие бентоса в районах нагула серых китов и на прилегающих акваториях

Отбор проб бентоса и донных отложений в течение девяти лет расширил имеющиеся данные о составе и численности видов (вкл. плотность поселения и биомасса) в каждом

Пильтунский нагульный район

- Средняя суммарная биомassa бентоса в Пильтунском нагульном районе по данным измерений 2002-2010 гг. оставалась сравнительно стабильной от года к году и колебалась в пределах от 414 до 556 г/м². Плоские морские ежи являются основной составляющей биомассы.
- Средняя общая биомassa в Пильтунском нагульного района увеличивается с глубиной, главным образом за счет увеличения количества плоских морских ежей.
- Средняя биомassa кормовых организмов (амфипода) в Пильтунском нагульном районе в период 2002-2010 гг. варьировала от 28,5 до 54,6 г/м².
- Максимальная биомassa кормовых организмов в Пильтунском районе обнаружена на глубинах до 15 м. Распределение амфипод “пятнистое” (мозаичное) и характеризуется наличием скоплений (агрегаций).
- Сравнение данных о биомассе амфипод в мелководных районах Пильтунского нагульного района за несколько лет указывает на следующее:
 - Биомасса амфипод в 2009-2010 гг. была аналогична значениям, наблюдавшимся в 2004-2005 гг.

Морской нагульный район

- Средняя суммарная биомassa бентоса в Морском нагульном районе по данным измерений 2002-2010 гг. составила от 489 до 655 г/м².
- Средняя биомassa амфипод в Морском нагульном района по данным измерений 2002-2010 гг. составила от 174 до 344 г/м². Доля биомассы амфипод в общей биомассе бентоса возрастила по мере удаления от берега.
- Сравнение данных о биомассе амфипод Морского нагульного района за несколько лет не показало статистически значимых различий между различными годами.

Промежуточный район

- Средняя биомassa бентоса в Промежуточном районе в 2007-2010 гг. составляла 414 г/м². Видовой состав и биомасса амфипод очень близки к наблюдаемым в Пильтунском районе. Как и в Пильтунском нагульном районе, биомасса амфипод резко уменьшалась по мере увеличения глубины.
4.3.2. Отбор проб бентоса, эпилентоса, планктона и донных отложений в точках питания серых китов

- Средняя глубина в точках питания серых китов в Пилтунском нагульном районе колеблется, но, как правило, составляет менее 20 м. Вклад кормовых организмов (амфипод и изопод) в общую биомассу в точках питания серых китов составляет свыше 50 % и достигает значений более 100 г/м². Сравнение этих значений с общей биомассой амфипод в отобранных по сетке пробах свидетельствует о том, что серые киты предпочитают участки с относительно высокой биомассой кормовых организмов.

- В Пилтунском районе отмечается высокая изменчивость частоты встречаемости и биомассы песчанки. Песчанка указана как кормовой вид для серых китов (Зимушенко и Ленская, 1970). Песчанка является временным элементом биоты на глубинах до 40 м, где она размножается. Наиболее плотные скопления песчанки в Пилтунском районе приурочены к участкам с грунтом, сложенным песком и смешанным гравием на глубинах свыше 20 м.
 - В 2002 и 2003 гг., песчанка наблюдалась в 5-8% проб, со средней биомассой от 4,6 до 6,2 г/м².
 - В 2004 и 2005 гг. песчанка присутствовала в 15% проб, со средней биомассой от 14,8 до 16,3 г/м². Наиболее плотные скопления отмечались в северной и средней частях Пилтунского района, где биомасса достигала значений от 68 до 166 г/м² в 2004 г. и от 150 до 236 г/м² в 2005 г. (что составляло от 25 до 60% суммарной биомассы макробентоса).
 - После 2005 г. частота встречаемости песчанки снижалась каждый год и достигла 20-25% в 2006 - 2007 гг. и 8-12% в 2008-2009 гг. Причина такого снижения неясна, но может быть связана с естественными колебаниями.
 - В 2010 г. частота встречаемости песчанки в северной части Пилтунского района увеличилась до 20%. Биомасса песчанки в двух точках питания серых китов достигала значений 66 и 78 г/м².
 - Вероятно, изменения концентраций песчанки влияют на распределение серых китов в пределах нагульных районов (см. главы 5 и 7).

- В Морском нагульном районе киты кормятся на глубинах от 40 до 60 м в районах, где биомасса амфипод превышает 200 г/м³.

- Бухта Ольга на Камчатке похожа на участок Чайво (Промежуточный район) на Сахалине в отношении размера района и биомассы амфипод, которая составляла в среднем 43,8 и 50,3 г/м³ в 2009 и 2010 гг., соответственно. Биомасса кормовых организмов на двух станциях в бухте Ольга, где не наблюдалось кормящихся серых китов, была ниже, чем в местах, где киты были замечены, и составила 24 и 22 г/м³ в 2009 и 2010 гг., соответственно (Фадеев 2011).

4.3.3. Распределение размеров распространенных видов кормовых организмов

Анализ размеров организмов кормовых видов в районах питания китов позволяет оценить долю амфипод, потенциально пригодных для питания. Считается, что минимальный
размер должен составлять 6 – 8 мм (Rice, Wolman 1973, Nerini 1984). Кроме того, воспроизведение, темпы роста особей и, что наиболее важно, потенциал продуктивности районов нагула серых китов можно оценить по распределению размеров кормовых видов амфипод. Данные указывают на то, что доля особей с длиной тела более 6 мм, т.е пригодных для питания китов, колебалась у разных кормовых видов от 58 до 100%.

4.3.4. Концентрации загрязняющих веществ в донных отложениях и тканях полихет

Первое исследование наиболее опасных загрязняющих веществ в Пильтунском районе проведено в 2001 г., когда производился отбор проб донных отложений вблизи мест, где наблюдалось интенсивное кормление китов. Установленные концентрации нефтяных углеводородов и 10 тяжелых металлов (мед, алюминий, мышьяк, барий, кадмий, хром, железо, ртуть, свинец и цинк) были низкими, и существенного воздействия загрязняющих веществ на бентос не наблюдалось (Фадеев, 2002).

Более детальные оценки содержания этих же наиболее опасных загрязняющих веществ (нефтяных углеводородов и тяжелых металлов) и хлорорганических пестицидов в донных отложениях проводились в 2004, 2005 и 2008-2010 гг. Кроме того, в 2008 г. анализировались концентрации тяжелых металлов в наиболее распространенных видах донных полихет. Известно, что концентрации тяжелых металлов в тканях полихет пропорциональны концентрации этих металлов в донных отложениях, где они обитают, в связи с чем они являются хорошими биоиндикаторами загрязнения донных отложений тяжелыми металлами. Выводы, сделанные по результатам анализов загрязняющих веществ, приведены в настоящем документе.

- Концентрация ДДТ, как и суммарная концентрация ДДТ и продуктов его метаболизма, колебалась лишь в незначительных пределах и не превышала фоновых значений для северо-востока Сахалинской области.
- Концентрации тяжелых металлов в донных отложениях не превышали фоновых значений, зарегистрированных на северо-восточном шельфе о. Сахалин перед началом активной производственной деятельности, при этом они существенно ниже значений вероятной активной концентрации токсичных металлов, при которой может ожидаться отрицательное воздействие на бентосные организмы.
- Концентрации нефтяных углеводородов были ниже естественных фоновых концентраций нефтяных углеводородов, зарегистрированных в донных отложениях шельфа о. Сахалин, при этом ближе к берегу отмечались более низкие концентрации.
- Из всех загрязняющих веществ, присутствующих в водных экосистемах, наибольшее негативное воздействие на бентос могут оказывать соединения тяжелых металлов. Проведенные в 2008 г. в Пильтунском районе анализы концентраций тяжелых металлов в тканях полихет подтвердили, что в период исследования загрязнение тяжелыми металлами в литоральной зоне Пильтунского района не наблюдалось.

4.3.5. Важность залива Пильтун для кормовой базы серых китов

На основании этого анализа был сделан следующий вывод:
Основные виды организмов, составляющих кормовую базу серых китов в Пильтунском и Морском нагульных районах (амфиподы и изоподы) питаются главным образом планктонными диатомовыми водорослями или организмами, питающимися в свою очередь диатомовым фитопланктом. Залив Пильтун не является важным источником организмов диатомового планктона, хотя он может обеспечить питательные вещества (азот и фосфор), необходимые для развития фитопланктона.

Бактерии, прикрепившиеся к частицам донных отложений (детриту), выносимых из залива Пильтун в Пильтунский район нагула, не являются существенной частью кормовой базы амфипод. Другие бентосные виды, такие как двустворчатые моллюски, могут питаться этими бактериями, прикрепившимися к частицам донных отложений.
5. ИЗУЧЕНИЕ ПОВЕДЕНИЯ СЕРЫХ КИТОВ ОХОТСКО-КОРЕЙСКОЙ ПОПУЛЯЦИИ

С целью определения степени, в которой производственная деятельность в рамках проектов по разработке нефти и газа на шельфе о. Сахалин может причинить беспокойство серым китам, с 2001 по 2010 гг. проводилось изучение поведения китов во время нагульного сезона. Исследования поведения дают важную информацию о естественном режиме питания, перемещения и дыхания серых китов. Наблюдения за поведенческими реакциями позволяют получить ценные данные о потенциальном негативном воздействии на китов тех видов антропогенной деятельности, которые проводятся в местах нагула или вблизи них. Основные задачи исследования поведения охотско-корейской популяции серых китов приведены ниже:

5.1. НАПРАВЛЕНИЯ И ЗАДАЧИ ИССЛЕДОВАНИЯ

- Распределение и численность серых китов: оценить суточные и сезонные изменения численности и характера распределения охотско-корейской популяции серых китов.
- Перемещения и поведение серых китов: оценить пространственные и временные закономерности перемещений и установить основные режимы питания и других типов поведения охотско-корейской популяции серых китов в зависимости от факторов окружающей среды и популяционных факторов с целью сбора информации о том, каким образом серые киты охотско-корейской популяции используют прибрежные районы нагула в течение суток, сезона и года.
- Воздействие антропогенных факторов: анализ потенциальных воздействий деятельности человека на перемещения и поведение охотско-корейской популяции серых китов.

5.2. НАБЛЮДЕНИЯ ЗА ПОВЕДЕНИЕМ

Наблюдения за поведением охотско-корейской популяции серых китов проводились в шести географических пунктах (станциях), охватывающих 66-километровую полосу береговой линии вдоль Пильтунского нагульного района (Рис. 5.1). На двух из этих шести станций данные о поведении собираются с 2001 г. (2-я станция и станция 07), в 2002 г. были добавлены еще две станции (1-я станция и Одопту), а последние две станции (Северная станция и Южная станция) добавлены в 2004 г. Использование береговых станций позволяет наблюдать за особенностями поведения, не причиняя беспокойства китам. В некоторых случаях, когда компаниями «Сахалин Энерджи» или «Эксон Нефтегаз Лимитед» выполнялись производственные операции, поблизости от районов этих операций были созданы дополнительные станции для наблюдения за поведением китов.

Применялись три основных метода наблюдений: выборочное сканирование с целью отнесительной оценки числа особей, распределения и размеров групп; 2) отслеживание отдельных особей или их групп при помощи теодолита с целью описания перемещений в пространстве, направления, скорости и использования среды обитания, а также 3) целевые наблюдения поведенческих реакций и дыхания отдельных особей с целью мониторинга...
параметров выныривания, дыхания, заныривания и других параметров поведения, видимых с поверхности. Эти методы и районы исследований представлены ниже. Более подробные сведения приведены в годовом отчете (Gaily et al. 2011 – Том I).

Приложение

Расположение береговых станций наблюдений за поведением китов, расположенных вдоль северо-восточного побережья острова Сахалин, Россия.

Примечание: Заштрихованные полукруги показывают приближенные зоны обзора (4 км) с каждой береговой станции. Для проведения целевых наблюдений и слежения при помощи теодолита использовалась дистанция обзора 4 км. Даты указывают на год, в который собирались данные с каждой станции.
5.2.1. Выборочное сканирование: Распределение и численность серых китов

Выборочное сканирование применялось для получения оценок относительной численности и распределения охотско-корейской популяции серых китов в Пильтунском нагульном районе. Каждые два часа два наблюдателя с ручными биноклями осматривали заданный сектор изучаемого района. Если наблюдатель замечал одного или нескольких китов, он регистрировал количество китов, угловое расстояние между китом и линией горизонта (по визирной сетке бинокля), магнитный азимут и расчетное расстояние от станции, регистрировалось также имя наблюдателя, заметившего китов первого. Результаты данных о численности и распределении серых китов, собранные группой наблюдения за поведением, объединены в гл. 6.

5.2.2. Слежение с помощью теодолита: Перемещения серых китов

Сеанс слежения с использованием теодолита начинался тогда, когда можно было установить присутствие одиночного или отдельно распознаваемого серого кита в группе и когда эта особь находилась на относительно небольшом расстоянии (приблизительно 4-5 км) от станции. Каждая особь прослеживалась непрерывно до тех пор, пока животное не исчезало из поля зрения, удаляясь за пределы критического расстояния, равного 4-5 км, или когда состояние окружающей природной среды препятствовало дальнейшему слежению. Каждая позиция, зарегистрированная по теодолиту, дата, время, а также вертикальные и горизонтальные углы вводились в базу данных Microsoft Access с указанием относительного расстояния, истинного азимута и географических координат, рассчитанных в режиме реального времени с использованием специальной компьютерной программы Pythagoras (Gailey, Ortega-Ortiz, 2002).

5.2.3. Целевые наблюдения: Поведение серых китов

Велось наблюдение за индивидуальным поведением и дыханием отдельных особей серых китов. В этом случае как минимум один наблюдатель следил за надежно опознаваемой особью с помощью ручного бинокля, объявляя все события, связанные с ее поведением. Оператор компьютера регистрировал данные наблюдений на портативном компьютере с помощью программы Pythagoras (Gailey, Ortega-Ortiz 2002). Сеанс индивидуального наблюдения прерывался, если кит выходил за пределы изучаемой площади (на расстояние около 4-5 км от станции наблюдения) или когда были превышены критерии по погодным условиям. В большинстве сеансов наблюдения дыхательные и поведенческие события регистрировались одновременно с данными о пространственных и временных
перемещениях, полученными при наблюдении за выбранным животным с помощью теодолита.

5.3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

В этом разделе представлены результаты наблюдения за поведением серых китов с береговых станций на северо-восточном побережье о. Сахалин в июле-сентябре с 2001 по 2010 гг. В нем также содержится раздел, обобщающий результаты различных многомерного статистического анализа, выполненного с целью определения воздействия производственной деятельности компаний «Сахалин Энерджи» и «Эксон Нефтегаз Лимитед» на поведение серых китов.

5.3.1. Перемещение и поведение серых китов

В местах нагула наблюдались преимущественно три типа поведения: 1) кормление, 2) кормление-перемещение, и 3) перемещение. Когда киты демонстрировали различные типы поведения, особенности их перемещения и дыхания значительно отличались. Серые киты двигались быстрее и более прямолинейно, и покрывали большие расстояния во время «перемещения» по сравнению с «кормлением-перемещением» и «кормлением». Закономерности перемещения также различались при типах поведения «кормление-перемещение» и «перемещение», что может быть признаком различных стратегий добывания пищи. Наблюдались и другие типы поведения, такие как «общение», «отдых» и «хаотическое движение», однако случаев их проявления было слишком мало для проведения подробного анализа.

Общие особенности перемещения и дыхания практически не меняются от года к году. Скорость движения серых китов охотско-корейской популяции, зарегистрированная с 2001 по 2010 гг. составляла 1,9 – 2,7 км/ч, а коэффициент использования ареала колебался в пределах 31,1 - 41,4 м/мин. Промежуток времени между фонтанами, зарегистрированный в период с 2001 по 2010 гг. составил 0,3 – 0,5 фонтанов в минуту, а продолжительность заныривания 1,8 – 2,7 минут. Промежуток времени между фонтанами и продолжительность заныривания были сравнимы с отмеченными у серых китов чукотско-калифорнийской (восточной) популяции, питающихся донными организмами в северной части Берингова моря (Würsig и dr. 1986) и у побережья о. Ванкувер (Guererro, 1989).

Некоторые параметры перемещения и поведения существенно различались у пар матер-детеныш, недавно отлученных от самки детенышей и других особей. Пары матер-детеныш держались ближе к берегу, чем другие особи, а скорость движения пар матер-детеныш были меньше, чем у других.

5.3.2. Воздействие антропогенных факторов на поведение серых китов

г.) и сейсморазведочных работ компании «Сахалин Энерджи» у платформы ПА-А (2010 г.) выполняются в настоящее время.

Основной целью аналитических работ с использованием многомерного статистического анализа является установление того, в какой степени уровни звукового давления, создаваемые различными видами производственной деятельности, влияли на перемещение, поведение, распределение и относительную численность охотско-корейской популяции серых китов. Одномерный статистический анализ позволяет скоррелировать только один параметр реакции с одним параметром воздействия. Хотя это позволяет получить полезные данные о трендах в данных и определить автокорреляцию параметров, этот метод не всегда дает адекватное представление об общей картине, учитывая, что серые киты подвергаются воздействию нескольких факторов одновременно (таких как природные условия, антропогенные факторы, а также собственные эндогенные мотивации, связанные с пространством, временем дня и (или) временем года). Методы многомерной статистики имеют преимущество, позволяя учесть различные переменные в пределах одной статистической модели.

Сейсморазведочные работы в районе месторождения Одопту в 2001 г.

Анализ данных, собранных в ходе сейсморазведочных работ на Одопту в 2001 г., показал, что при повышенном уровне звукового давления киты перемещались быстрее, меньше меняли направление движения, отходили от берега и дольше оставались под водой (Gailey и dr. 2007а). Изменения распределения и численности также были заметны при наблюдениях с воздуха и с берега (Язвенко и dr. 2007, Веллер и dr. 2005). Результаты указывали на то, что 5-10 китов, вероятно, покинули район сейсморазведочных работ в другие части нагульного района в результате увеличения суммарного уровня звука, усредненного за 3 дня.

Монтаж бетонного ОГТ в 2005 г.

По результатам многомерного статистического анализа данных о перемещении и поведении серых китов во время монтажа бетонного ОГТ значимых воздействий не было выявлено. Тем не менее, расстояние от берега имело значимую корреляцию с уровнем шумов, поэтому прогнозируется, что при возрастании уровня шумов серые киты должны отходить немного дальше от берега. В этой работе шумопроизводился как научно-исследовательскими судами вблизи берега, так и при проведении работ, связанных с бетонным ОГТ, поэтому было невозможно проверить влияние одного или другого источника шума отдельно. Было замечено, что серые киты особенно чувствительны к операциям исследовательских судов, которые находились в Пильтунском нагульном районе и вблизи его, что могло привести к наблюдавшимся перемещениям китов дальше от берега в зависимости от уровня шумов. Gailey et al. (2007) утверждают, что именно научно-исследовательские суда, работающие вблизи побережья, а не строительные работы, генерируют самые высокие уровни шумов.

Строительство трубопровода в 2006 г.

В 2006 году началось строительство трубопровода между Пильтун-Астохской платформой Б (ПА-Б) и платформой Моликпак (ПА-А). Многомерные анализы, направленные на изучение возможных воздействий работ по строительству трубопроводов на...
поведение охотско-корейской популяции серых китов, показали, что по мере повышения уровней шумов в результате дноуглубительных работ интервалы между дыханиями серых китов сокращались (они дышали чаще), что может указывать на стресс или, как минимум, на более высокое потребление энергии. В ходе этих анализов уровни шумов разделялись на связанные с производственной деятельностью и работами судов в прибрежной зоне, в связи с чем результаты по двум видам работ не объединялись (Gailey и др. 2011). Неизвестно, в какой степени эти изменения поведенческих параметров влияют на состояние популяции.

5.4. ПЕРВОНАЧАЛЬНЫЕ ВЫВОДЫ:

1. Проведенный анализ с использованием методов многомерной статистики показал, что при более высоких уровнях шумов киты перемещались быстрее, меньше меняли направление движения, были дальше от берега, и оставались под водой дольше между выныриваниями; эти эффекты были краткосрочными.

2. Существенного воздействия на перемещения китов и поведение в результате установки бетонного ОГТ не было отмечено.

3. Научно-исследовательские суда, работающие вблизи побережья, а не строительные работы, генерируют самые высокие уровни шумов.
6. РАСПРЕДЕЛЕНИЕ И ЧИСЛЕННОСТЬ СЕРЫХ КИТОВ

Начиная с 2001 г. в рамках совместной программы мониторинга изучались распределение и численность китов в Пильтунском и Морском нагульных районах, а также на Пильтун-Астохском и Аркутун-Дагинском лицензионных участках. Распределение китов изучалось как с берега, так и с судна группами опытных наблюдателей. С 2001 по 2005 гг. специалисты Тихоокеанского научно-исследовательского института рыбного хозяйства и океанографии (ТИНРО), г. Владивосток, вели наблюдения с воздуха. Исследования с берега и с судов координировались Всероссийским научно-исследовательским институтом рыбного хозяйства и океанографии (ВНИРО), г. Москва, с участием наблюдателей за морскими млекопитающими из Института биологии моря (ИБМ), Дальневосточного государственного университета (ДВГУ) и Дальневосточного государственного технического рыбнохозяйственного университета (Дальрыбвтуз).

6.1. НАПРАВЛЕНИЯ И ЗАДАЧИ ИССЛЕДОВАНИЯ

Задачами исследования распределения китов в рамках совместной программы мониторинга являются следующие:

- каким образом западная популяция серых китов использует Пильтунский и Морской нагульные районы на северо-востоке острова Сахалин в течение суток, сезона и из года в год;
- оценить естественные изменения параметров внутригодового и межгодового использования ареала охотско-корейской популяции серых китов и перемещения китов между нагульными районами;
- каким образом изменения распределения и численности охотско-корейской популяции серых китов в нагульных районах связаны с антропогенными факторами;
- какие меры по снижению воздействий могут быть разработаны на основе полученных знаний о численности и распределении охотско-корейской популяции серых китов.

Помимо совместной программы мониторинга, в ходе строительных и сейсмоморозовочных работ, выполняемых Компаниями, проводятся специальные исследования распределения и численности охотско-корейской популяции серых китов. Эти специализированные исследования планируются и выполняются в следующих целях:

- Оценить изменения распределения и численности серых китов во времени в зависимости от конкретных видов работ.
- Определить воздействие производственной деятельности, факторов окружающей среды и других параметров на распределение и численность серых китов в предпочтительном ими нагульном районе, примыкающем к заливу Пильтун.

В данной главе приводится краткое описание результатов изучения распределения и численности серых китов с берега и с судов. Данные и результаты, изложенные в этой главе, взяты из отчетов по совместной программе мониторинга, ежегодно представляемых в Минприроды России, Росприроднадзор и Росрыболовство (Блохин и др. 2004, Владимиров и...

6.2. СТАНЦИИ И ПРОТОКОЛ НАБЛЮДЕНИЙ

6.2.1. Работы

Исследования распределения китов с судов и с воздуха в рамках совместной программы мониторинга в Пильтунском и Морском нагульных районах начались в 2002 г. В 2003 г. с целью изучения его целесообразности был инициирован мониторинг с береговых станций на северной косе залива Пильтун. В 2004 г. было решено продолжить мониторинг с берега, в том числе со станций к югу от устья залива Пильтун до залива Чайво (табл. 6.1).

С 2005 г. расположение этих береговых станций существенно не менялось. В 2006 г. было решено отказаться от наблюдений с воздуха, поскольку они не добавляли существенной информации к данным наблюдений с берега и с судов, будучи одновременно дорогостоящими и представляющими высокий риск безопасности людей. В 2007 г. исследования с судов в Пильтунском районе были расширены на юг; они охватили морскую акваторию, прилежащую к заливу Чайво и далее на юг до ширины северной части Нийского залива, поскольку в 2006 г. наблюдатели с трубоукладочных барж компании «Сахалин Энерджи» заметили китов в этом районе. Чтобы собрать данные о распределении и численности китов на лицензионных участках ЭНЛ и «Сахалин Энерджи», в объем работ были добавлены наблюдения за распределением китов с судов на Аркутун-Дагинском (ЭНЛ) и Пильтун-Астохском (“САХАЛИН ЭНЕРДЖИ”) участках в 2006-2010 гг. и 2009-2010 гг., соответственно.

Карта береговых станций и морских профилей, составляющих ядро программы изучения распределения показаны на Рис. 6.1. Исследования распределения и численности в рамках совместной программы мониторинга как правило начинаются в конце июля – начале августа и продолжаются до конца сентября. В те годы, когда велась определенная производственная деятельность, исследования распределения проводились раньше (например, в конце июня), с организацией дополнительных станций и/или с направлением большего числа полевых групп.

Таблица 6.1. Общие данные о типах и площадях учетов распределения и численности серых китов

<table>
<thead>
<tr>
<th>Вид учета</th>
<th>Местоположение</th>
<th>Период, года</th>
</tr>
</thead>
<tbody>
<tr>
<td>Авиаучеты</td>
<td>Морской, Пильтунский</td>
<td>2002 - 2005</td>
</tr>
<tr>
<td>Береговые учеты</td>
<td>Пильтунский нагульный район</td>
<td>2003 – 2010</td>
</tr>
<tr>
<td>Судовые учеты</td>
<td>Морской нагульный район</td>
<td>2002 – 2010</td>
</tr>
<tr>
<td>Судовые учеты</td>
<td>Пильтунский нагульный район</td>
<td>2002 –2010</td>
</tr>
<tr>
<td>Судовые учеты</td>
<td>Аркутун-Дагинский участок</td>
<td>2006 – 2010</td>
</tr>
<tr>
<td>Судовые учеты</td>
<td>Пильтун-Астохский участок</td>
<td>2009 – 2010</td>
</tr>
</tbody>
</table>

6.2.2. Протоколы наблюдений

В ходе судовых учетов по линейным трансектам два наблюдателя за морскими млекопитающими (НММ) систематически осматривают 180-градусный сектор прямо по курсу судна для обнаружения серых китов и других видов морских млекопитающих. Наблюдения ведутся только в условиях хорошей видимости (не менее 1,5 км по курсу или видимость 50% горизонта) и при спокойном море (волны не выше трех баллов по шкале Бофорта).

Рисунок 6.1. Транспекти судовых учетов и расположение береговых станций наблюдения за распределением серых китов
Наблюдение за серыми китами и другими видами морских млекопитающих с берега выполняются двумя группами наблюдателей: восемь точек наблюдения располагаются к северу, и пять точек — к югу от устья залива Пильтун. В каждой точке два специалиста одновременно просматривают заданный участок акватории в бинокли со скоростью 10 град./мин, в соответствии с методикой, применяемой с 2004 года. Данные о численности и распределении охотско-корейской популяции серых китов, собранные в ходе систематических учетов с судов и береговых станций, анализируются для получения расчетов плотности китов с разрешением 1 км². Эта методика более подробно описана в работе Владимира и др. 2011.

6.3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

В следующих разделах представлены результаты изучения распределения серых китов с береговых станций и судов в июле-сентябре с 2001 по 2010 гг.

Результаты изучения распределения и численности китов в рамках совместной программы мониторинга выявили значительные изменения (как внутригодовые, так и межгодовые) в распределении китов в пределах районов нагула. Поскольку самые длинные непрерывные ряды наблюдений собраны по Пильтунскому и Морскому нагульным районам, этот отчет посвящен главным образом этим районам.

6.3.1. Внутригодовые изменения в Пильтунском нагульном районе

Сезонные закономерности

Серые киты охотско-корейской популяции появляются в Пильтунском нагульном районе после таяния льдов. Имеющиеся данные наблюдений за распределением собранные за июнь-июль в ходе определенных работ, показывают, что число китов, наблюдаемое в начале нагульного сезона, как правило, невелико. В ходе сезона численность постепенно возрастает и достигает максимума в период с середины августа по середину сентября. С середины сентября число китов начинает постепенно снижаться. Как правило, уменьшение числа китов в Пильтунском нагульном районе во второй половине сентября совпадает с увеличением числа особей, наблюдаемых в Морском нагульном районе.

Расстояние от берега

В начале нагульного сезона, серые киты обычно находятся ближе к берегу, чем позднее в ходе сезона (рис. 6.2). Вплоть до конца августа приблизительно 80% (данные 2007-2010 гг.) китов наблюдалась в пределах 2 километров от берега, что соответствует глубинам около 10 м. Детеныши и пары мать-детеныш наблюдались ближе к берегу (< 1 км), чем взрослые особи (Сыченко и др. 2011, Владимира и др. 2011). В сентябре большинство китов по-прежнему находятся на расстоянии около 1 -2 км от берега, но наблюдаются также и дальше от берега (2-5 км). Глубины в этой зоне колеблются примерно от 10 до 20 м.

Основные причины предпочитения мелководья в начале нагульного района, вероятно, частично связаны с присутствием в этот период пар мать-детеныш, которые обычно наблюдают ближе к берегу. Это может быть связано с попыткой избежать хищников, находящихся в более спокойных районах (которые лучше подходят для выкармливания
детенышей) и/или в условиях, более пригодных для процесса обучения детенышей и начала их кормления твердой пищей (Сыченко и др. 2011). Кроме того, есть мнение, что в начале нагульного сезона биомасса бентоса вблизи от берега еще высока. Так как бентос проще добывать на меньших глубинах, киты, вероятно, предпочитают начинать кормиться там после прибытия из мест размножения.

Рисунок 6.2. Средняя расчетная плотность охотско-корейской популяции серых китов на основании данных систематических наблюдений с воздуха, с судов и с берега в 2001-2010 гг.

Примечание: Значения плотности нормированы на усиление по наблюдению (усилия).

Эксон Нефтегаз Лимитед

38

Сахалин Энерджи Инвестмент Компани, Лтд.
6.3.2. Межгодовые изменения в использовании Пильтунского нагульного района китами

Киты в Пильтунском нагульном районе не часто наблюдаются за изобатой 20 м, в так называемой зоне плоских морских ежей, не являющихся кормовым видом. Однако в некоторые годы в северной части района нагула наблюдаются скопления песчанки (Ammodobytes hexapterus) (Фадеев 2004, 2005). Когда возникают такие скопления, у изобаты 20 м и за ней наблюдается больше китов. На рис. 6.3 показаны межгодовые тенденции изменения численности серых китов в Пильтунском нагульном районе.

<table>
<thead>
<tr>
<th>Год</th>
<th>Среднее число китов на отрезках</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>2.45 10.14 17.41 16.09 9.45 6.36 4.19 4.64 7.79 4.39 0.68 0.29 0.09 0.00</td>
</tr>
<tr>
<td>2005</td>
<td>1.80 15.80 25.90 16.92 8.20 6.52 4.36 5.16 7.32 8.44 1.48 1.94 1.72 0.00</td>
</tr>
<tr>
<td>2006</td>
<td>1.75 4.50 11.90 10.88 6.88 5.75 4.50 4.88 6.98 9.61 6.00 6.11 11.90 0.11</td>
</tr>
<tr>
<td>2007</td>
<td>0.10 0.76 3.06 2.10 1.96 2.86 6.26 6.10 9.50 10.10 2.19 3.26 6.60 0.20</td>
</tr>
<tr>
<td>2008</td>
<td>0.00 0.00 0.51 1.10 0.45 2.20 1.55 7.00 4.04 0.91 1.10 1.27 1.51 0.30</td>
</tr>
<tr>
<td>2009</td>
<td>0.23 0.82 0.24 0.30 4.31 5.12 2.83 0.62 3.09 10.00 2.62 4.52 3.02 0.24</td>
</tr>
<tr>
<td>2010</td>
<td>0.04 1.83 3.00 5.53 3.94 6.32 6.33 4.27 3.94 4.42 0.50 0.32 0.03 0.11</td>
</tr>
</tbody>
</table>

Рисунок 6.3. Межгодовые изменения сезонной численности серых китов в акватории Пильтунского района в 2004-2010 гг. (по данным полных синхронизированных береговых учетов)

Межгодовые изменения концентрации китов в пределах Пильтунского нагульного района можно увидеть на рис. 6.3 и рисунках в Приложении B, где приведен ряд карт среднегодовой плотности китов за период 2004 – 2010 гг.

- В период 2002-2004 гг. большая часть китов наблюдалась к северу от устья залива, тогда как только несколько китов были обнаружены к югу от станции 10. Высокие плотности китов в северной части исследуемого района в 2004 и 2005 гг. совпали с присутствием там скоплений песчанки, что дает основания предполагать, что киты продвинулись дальше на север для освоения этого ресурса.
- В 2006 г. наблюдалось существенное увеличение плотностей китов между станциями 11 и 13, что совпало по времени со строительством морского
трубопровода компанией «Сахалин Энерджи» в этом районе. Распределение китов по всему исследуемому району в 2006 и 2007 гг. было достаточно равномерным.

- В 2008 г. число зарегистрированных китов было небольшим, а затем в 2009 г. увеличилось более чем на 50%.
- По данным о распределении 2002-2010 гг. можно сделать вывод о том, что большие скопления китов обычно наблюдаются у устья залива Пильтун, и существуют значительные изменения в использовании ими северной и южной частей нагульного района.

6.3.3. Внутри- и межгодовые изменения в использовании Морского нагульного района китами

По сравнению с береговыми наблюдениями за распределением китов на акватории Пильтунского нагульного района, объем работ в Морском нагульном районе гораздо меньше, из-за замены наблюдений с берега наблюдениями с судов, плохой погоды, плохой видимости и т.д. Тем не менее, благодаря ежегодным наблюдениям с судов, которые велись в этом районе, существует возможность проанализировать как внутригодовые, так и межгодовые изменения в использовании Морского нагульного района.

Показано, что в течение нагульного сезона численность китов в более глубокоовдом Морском нагульном районе постепенно возрастает. Это соответствует наблюдаемому снижению числа и плотности китов в Пильтунском нагульном районе к концу нагульного сезона, что указывает на то, что киты предпочитают кормиться в Морском районе перед началом миграции к местам размножения (рис. 6.4).

Как и в случае Пильтунского нагульного района, существуют значительные межсезонные изменения распределения и численности китов, наблюдаемых в Морском нагульном районе.

В 2001 г., когда был открыт Морской нагульный район (Маминов и Яковлев 2002), максимальное число китов, отмеченных в Морском районе, было большим. Минимальное число китов в Морском нагульном районе наблюдалось в 2004 г. и совпало с максимальным числом китом, отмеченным в ходе одного сеанса наблюдения в Пильтунском районе. На рис. 6.4 видно, что имело место постепенное увеличение плотности китов в Морском нагульном районе в период 2004 – 2008 гг. 2008 г. характеризовался особенно высокими значениями плотности китов в Морском нагульном районе. В ходе одного сеанса наблюдения 3 октября было замечено 82 особи, что, опять таки, совпало с низкой плотностью китов в Пильтунском нагульном районе. Рост численности китов в Морском нагульном районе в период 2004 - 2008 гг. прекратился в 2009 г., когда было отмечено меньше число китов, которые также
наблюдались восточнее площади наблюдений. Эта же тенденция к смещению на восток, в более глубоководные районы, наблюдалась и в 2010 г.

![График числа китов](image)

Рис. 6.4. Максимальное число китов, наблюдавшихся в ходе береговых наблюдений (красная линия) и в ходе наблюдений с судов (синяя пунктирная линия).

6.3.4. Киты на Аркутун-Дагинском и Пильтун-Астохском лицензионных участках

Исследования с судов на Аркутун-Дагинском и Пильтун-Астохском лицензионных участках ведутся с 2006 и 2009 гг., соответственно. В целом, число китов, наблюдавшихся на Аркутун-Дагинском участке, было невелико, за исключением 2010 г., когда в ходе наблюдений было замечено 17 китов (табл. 6.2).

Вместе с тем, в 2009 и 2010 гг. в ходе судовых учетов несколько китов были замечены в акваториях Пильтун-Астохского (7 китов) и Аркутун-Дагинского участков (17 китов), однако такие значения численности, по-видимому, редки.

<table>
<thead>
<tr>
<th>Год</th>
<th>Число учетов, выполненных на Аркутун-Дагинском участке</th>
<th>Число особей, отмеченных в ходе учетов на Аркутун-Дагинском участке</th>
<th>Число учетов, выполненных на Пильтун-Астохском участке</th>
<th>Число особей, отмеченных в ходе учетов на Пильтун-Астохском участке</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>6</td>
<td>0, 0, 1, 2, 2, 3</td>
<td>Н/П*</td>
<td>Н/П</td>
</tr>
<tr>
<td>2008</td>
<td>2</td>
<td>0, 7</td>
<td>Н/П</td>
<td>Н/П</td>
</tr>
<tr>
<td>2009</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2010</td>
<td>2</td>
<td>0, 17</td>
<td>2</td>
<td>0, 4</td>
</tr>
</tbody>
</table>

Примечание: Н/П* - не применимо, т.е. учет не проводился.
7. ФОТОИДЕНТИФИКАЦИОННЫЕ ИССЛЕДОВАНИЯ СЕРЫХ КИТОВ

Исследования с использованием метода фотоидентификации являются важной составной частью совместной программы мониторинга, и осуществляются начиная с 2002 г. Идентификация отдельных особей позволяет получать сведения о динамике популяции и ее демографических характеристиках, социальной структуре популяции и жизни отдельных животных. В долгосрочной перспективе это также обеспечивает возможность оценки состояния и здоровья популяции. Такое детальное изучение перемещений отдельных особей, состояния популяции и тенденций проводится для обоснования управленческих решений. Более детально задачи наблюдений с использованием фотоидентификации в рамках совместной программы мониторинга рассматриваются ниже.

7.1. НАПРАВЛЕНИЯ И ЗАДАЧИ ИССЛЕДОВАНИЯ

В ходе наблюдений за серыми китами охотско-корейской популяции на северо-восточном шельфе о. Сахалин с использованием фотоидентификации ставились следующие основные задачи:

1. Оценить численность и привязанность к территории (site fidelity), т.е. ежегодное возвращение идентифицированных особей серых китов охотско-корейской популяции на северо-восточном шельфе о. Сахалин и у восточного побережья Камчатки;

2. Изучить внутри- и межгодовые перемещения отдельных китов в пределах Пильгунского и Морского нагульных районов и между ними, а также у восточного побережья Камчатки (с 2006 г.);

3. Оценить физическое состояние животных и признаки, позволяющие определить здоровье отдельных китов;

4. Оценить демографические характеристики и структуру охотско-корейской популяции серых китов.

7.2. МЕТОДИКА ФОТОИДЕНТИФИКАЦИИ

7.2.1. Методы полевых работ

Методы полевых работ по фотоидентификации, применяемые группой ИБМ с 2002 г., основаны на рекомендациях по фотоидентификации морских млекопитающих, изложенных в специальной публикации Международной китобойной Комиссии № 12 (Hammond et al. 1990).

При приближении к китам в каждом случае в специальных формах регистрировались следующие данные: положение надувной лодки типа Zodiac (по GPS-навигатору), глубина

Эксон Нефтегаз Лимитед
Сахалин Инвестмент Компаний, Лтд.
(по цифровому эхолоту), температура, а также расстояние и азимут до наблюдаемого кита (китов). Также отмечалось местоположение китов, время, поведение, численность китов и направление их движения, присутствие в районе наблюдений косаток и проходящих судов, пролетающих самолетов и вертолетов. При фотографировании и видеосъемке фиксировались номера кадров фото- и видеоаппаратуры, относящиеся к отснятым китам. По возможности фотографировались все части тела каждой особи (голова, бока и хвостовой плавник). Особое внимание уделялось фотографированию правого и левого бока каждого кита, поскольку выставление хвостового плавника над поверхностью моря зависит от поведения особи и глубины кормления.

7.2.2. Лабораторные методы

При лабораторной обработке фотографий изучается каждый полученный за сезон снимок с целью его принадлежности к определенной особи. Процедура идентификации китов подробно описана в ежегодных отчетах. После того, как все изображения определены и снабжены подробным описанием животного и каталожным номером кита, из них выбираются лучшие фотографии для каждого кита, по возможности наилучшим образом описывающие кита. Киты, встреченные впервые, получают новый каталожный номер. После этого все данные вводятся в базу данных, которая позволяет извлекать любые сведения как о конкретном животном, за любой срок наблюдений, так и о группах китов в каждом из исследуемых районов. За каждый год исследований создается каталог идентифицированных особей, на основании которых строится главный каталог, который ежегодно обновляется. Киты, зарегистрированные на шельфе о. Сахалин, получают индекс KOGW, киты, зарегистрированные на шельфе п-ва Камчатка, получают индекс KamGW.

7.3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

7.3.1. Каталоги серых китов

Фотоидентификация китов у о. Сахалин охватывает все северо-восточное побережье острова, включая прибрежный Пильтунский нагульный район и Морской нагульный район, находящийся дальше от берега. Работы по фотоидентификации были сосредоточены в этих двух нагульных районах, однако при возможности фотографирование китов также проводилось в других районах (например, к северу от г. Оха в 2010 г. и в других районах в предшествующие годы). Исследования с применением фотоидентификации проводились у восточного побережья Камчатки в 2004 г. (Халатырский пляж) и 2006 – 2010 гг. (бухты Вестник и Ольга). Все животные, сфотографированные в этих районах, включены в Камчатский каталог.

Помимо китов, наблюдавшихся у побережья о. Сахалин и Восточной Камчатки, серые киты часто наблюдались у Командорских островов, находящихся на расстоянии около 200 км к востоку от Камчатки. В 2008 г. серый кит, ранее замеченный в бухте Ольга у берегов Камчатки (в 2007 г.), был сфотографирован в бухте Закатная о. Шикотан (Курильские о-ва). Позднее в 2008 г. этот кит был снова замечен в бухте Ольга, у о. Медный (Командорские о-ва) и у о. Карагинский (северо-восточное побережье Камчатки).
7.3.2. Состояние популяции серых китов

С начала программы фотоидентификации число животных, идентифицированных у побережья о. Сахалин, постепенно увеличилось с 47 в 2002 г. до 187 в 2010 г. (табл. 6.1). Согласно предварительному анализу 22 из этих 187 особей не наблюдались у о. Сахалин или восточных берегов Камчатки в течение более трех лет, т.е. с 2007 г. Так как в среднем около 89% китов повторно обнаруживаются на следующий год, а 97,6% в течение двух лет, остается неясным, живы ли еще эти киты. Если допустить, что этих 22 особи нет в живых, а остальные особи живы, то общая численность популяции составляет около 165 особей. Это значительно больше последней оценки численности популяции (Cooke et. al. 2010) - 131 особь, не считая детенышей в 2009 г.

Вплоть до 2005 г. число новых для каталога особей было довольно высоким в каждом сезоне за счет идентификации взрослых особей, зарегистрированных впервые (табл. 7.1). Однако после 2005 г. это число существенно снизилось, и в среднем в период с 2005 по 2010 г. в каталог ежегодно заносилось 3,2 новых взрослых кита. Несмотря на факт установления взаимообмена между особенно охотско-корейской и восточной популяциями (Mate и др. 2011), это число указывает на то, что каждый год к побережью о. Сахалин возвращаются кормиться, главным образом, одни и те же особи.

Таблица 7.1. Общие данные о численности китов, ежегодно идентифицируемых у побережья о. Сахалин и Камчатки в период с 2002 по 2010 гг.

<table>
<thead>
<tr>
<th>Год</th>
<th>Число китов (всего за год) у побережья о. Сахалин</th>
<th>Число новых взрослых особей, обнаруженных за год у побережья о. Сахалин</th>
<th>Число детенышей у побережья о. Сахалин</th>
<th>Число китов в Камчатском каталоге</th>
<th>Число китов (всего за год) у побережья о. Сахалин и Камчатки</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>47</td>
<td>47</td>
<td>-</td>
<td>47</td>
<td>-</td>
</tr>
<tr>
<td>2003</td>
<td>82</td>
<td>37</td>
<td>10</td>
<td>92</td>
<td>-</td>
</tr>
<tr>
<td>2004</td>
<td>96</td>
<td>21</td>
<td>3</td>
<td>118</td>
<td>98</td>
</tr>
<tr>
<td>2005</td>
<td>117</td>
<td>14</td>
<td>4</td>
<td>136</td>
<td>-</td>
</tr>
<tr>
<td>2006</td>
<td>121</td>
<td>7</td>
<td>5</td>
<td>148</td>
<td>122</td>
</tr>
<tr>
<td>2007</td>
<td>125</td>
<td>4</td>
<td>9</td>
<td>160</td>
<td>132</td>
</tr>
<tr>
<td>2008</td>
<td>98</td>
<td>0</td>
<td>5</td>
<td>165</td>
<td>122</td>
</tr>
<tr>
<td>2009</td>
<td>117</td>
<td>4</td>
<td>8</td>
<td>177</td>
<td>138</td>
</tr>
<tr>
<td>2010</td>
<td>105</td>
<td>2</td>
<td>8</td>
<td>187</td>
<td>128</td>
</tr>
</tbody>
</table>

Число китов, идентифицируемых каждый год, значительно колеблется, что можно объяснить сочетанием колебаний объема проведенных работ (усилия) по фотоидентификации, а также реального числа китов, находящихся у о. Сахалин.

Если учитывать в ежегодных оценках численности охотской-корейской популяции серых китов данные по Камчатке, общее число особей, отмеченных у о. Сахалин и у восточного побережья Камчатки, составляло 122, 138 и 128 в 2008, 2009 и 2010 гг. соответственно. По этим данным (табл. 6.1) очевидно, что не все киты, включенные в каталог...
охотской-корейской популяции серых китов наблюдаются в водах у побережья о. Сахalin каждый год, и что иногда они наблюдаются только у восточного побережья Камчатки.

Из 140 особей, включенных в Камчатский каталог в 2010 г., 78 также включены в Сахалинский каталог, поскольку они ранее наблюдались в местах нагула у о. Сахalin. Неясно, к какой популяции относятся остальные 62 особи.

База данных ИБМ за 2002 – 2008 гг. также включена в последнюю оценку численности популяции (Cooke et al. 2010). По результатам оценки был сделан вывод, что на 209 г. расчетная численность популяции (без учета детеншей) составила 131 особь (90% байесовский доверительный интервал 120-140), 33 из которых (доверительный интервал 29-38) считаются зрелыми самками, способными давать потомство. Оценка популяции по Cooke et al. (2010) также указывает на высокую вероятность роста популяции (>99%) при условии отсутствия дополнительных смертей, обусловленных антропогенными факторами. В более ранних оценках популяции (Cooke et al. 2008) прогнозировалось ежегодное увеличение численности популяции на 2,5%.

Поскольку за последние три сезона (2008 – 2010 гг.) были встречены 165 особей, численность популяции может быть выше последних оценок.

В период с 2003 по 2010 гг. в общей сложности было сфотографировано 52 детеныша от 31 самок. Большинство самок (20) наблюдались с детенцем только один раз за этот период, семь самок родили двух детеней, а четыре самки были замечены с детенышами трижды. Средний интервал рождения детеней для 11 самок, приходивших с детенышами более одного раза, составил 2,28 года.

7.3.3. Использование ареала серыми китами

До открытия Морского нагульного района в 2001 г. считалось, что Пильтунский район является основным местом нагула охотско-корейской популяции серых китов. Впоследствии выяснилось, что серые киты охотско-корейской популяции также часто посещают Морской район, особенно чаще к концу нагульного сезона. Корякские киты периодически наблюдаются также в морской акватории у зал. Чайво и у г. Оха.

Данные фотоидентификации показали, что каждый год часть охотско-корейской популяции серых китов перемещается между Пильтунским и Морским районами нагула в течение одного сезона. Помимо мест нагула у северо-восточного побережья о. Сахalin, появление серых китов было также зарегистрировано у восточного побережья Камчатки, где исследования в рамках совместной программы мониторинга были начаты в 2004 г. В 2006 г. были обнаружены внутригодовые миграции между восточной Камчаткой и Пильтунским районом, когда два кита наблюдались в бухте Ольга и бухте Вестник, а затем были замечены в том же сезоне в Пильтунском районе. Начиная с 2006 г. в каждый сезон часть китов, наблюдающихся у Камчатки, позднее в том же сезоне наблюдалась и в Пильтунском районе. В 2010 г., 81 из 140 китов, включенных в Камчатский каталог, были в определенное время замечены у о. Сахалин и, таким образом, считаются принадлежащими к охотско-корейской популяции серых китов. В настоящее время неясно, к какой популяции относятся остальные 59 особей, возможно, что они принадлежат восточной популяции.

Камчатка может быть важным районом для пар “мать-детенщ”. В 2008 г. в бухте Ольга впервые была зарегистрирована самка с детенцем, при этом самка в
предшествующие годы наблюдалась как в Пильтунском районе, так и в бухте Ольга. В 2009 г. в бухте Ольга наблюдалось семья пар мать-детеныш. Четыре самки были замечены на шельфе о. Сахалин в предшествующие годы, одна из них также была сфотографирована в Пильтунском районе в 2009 г. и была замечена там с детенышем в 2007 г. В 2010 г., в бухте Ольга были зарегистрированы три пары мать-детеныш. Все три зарегистрированные самки были замечены в шельфовых водах о. Сахалин и п-ва Камчатка и в предыдущие годы. Одна самка была фотонидентифицирована как мать с детенышами в Пильтунском районе в 2004 и 2007 гг. Две другие самки никогда не были замечены с детенышами.

7.3.4. Наблюдения за состоянием тела серых китов

Физическое состояние тела

Начиная с 2003 г. проводилась оценка физической кондиции тела (ФКТ). На основании визуально оцениваемых признаков недостаточной упитанности, животным присваивался определенный класс ФКТ. Классы 0-1 указывают на удовлетворительную ФКТ, а классы 2-4 на недостаточную физическую кондицию или упитанность тела. По сравнению с другими годами большее число китов с недостаточной ФКТ было зарегистрировано в 2003, 2006, 2008 и 2009 годах. Наилучшая ФКТ наблюдалась в 2005 г. С 2005 г. отслеживается ФКТ китов, неоднократно регистрируемых за один сезон. Было выяснено, что большинство китов улучшают физическое состояние к концу сезона (Яковлев и Тюрнева, 2006; Яковлев и др. 2007). По результатам последних регистраций в сезоне было установлено, что большинство животных, т.е. не менее 80%, находились в удовлетворительной физической кондиции (классы 0 и 1).

Слущивание кожи

Слущивание кожи серых китов охотско-корейской популяции впервые было отмечено в 2003 г. Кроме того, это явление с разной степенью серьезности наблюдалось в 2004 - 2007 гг., но отсутствовало в период 2008 - 2010 гг. Причина слущивания кожи неизвестна. Наблюдения за сфотографированными китами со слущиванием кожи велись с целью обнаружения видимых изменений внешнего вида и физической кондиции. На сегодняшний день на основании оценки фотографий этих китов нетипичных физических состояний не выявлено. Визуальные оценки показали, что эти участки кожи не оказывают никакого влияния на состояние здоровья.

Эксон Нефтегаз Лимитед 46 Сахалин Энерджи Инвестмент Компани, Лтд.
8. ПЛАНЫ АНАЛИТИЧЕСКИХ РАБОТ

В настоящее время в каждой из Компаний выполняется ряд аналитических работ, кроме того, выполняется также комплексный анализ с целью объединения результатов, полученных по разным направлениям совместной программы мониторинга. Список аналитических работ и потенциальных сроков их выполнения приведен ниже.

1. Многомерный статистический анализ распределения и поведения китов при выполнении четырехмерной сейсморазведки в 2010 г. – финансируется компанией «Сахалин Энерджи». Специальный план мониторинга и снижения воздействия был реализован во время выполнения сейсморазведочных работ для улучшения понимания того, каким образом сейсморазведочные работы могут повлиять на серых китов. Данные о поведении и распределении китов были собраны до, во время и после сейсморазведочных работ. Акустические буи записывали уровни звука вдоль границы района нагула. В настоящее время выполняется многомерный статистический анализ с целью выяснения, оказали ли сейсморазведочные работы воздействие на поведение и распределение серых китов, и какой уровень воздействия был оказан. Этот анализ планируется завершить к маю 2012 г.

2. Многомерный статистический анализ процесса забивания свай на месторождении Одопту в 2009 г. – финансируется компанией ЭНЛ и выполняется под руководством Глэна Гэйли (Техасский университет A&M). Глэн Гэйли возглавляет группу статистиков, акустика и специалистов по изучению поведения, выполняющую данный многомерный анализ. Анализ начат в октябре 2011 г., завершить его планируется к июлю 2012 г.

3. Комплексные анализ многолетних результатов, полученных в ходе выполнения совместной программы мониторинга – финансируются обеими Компаниями; данный анализ осуществляет при участии группы специалистов по статистике и ГИС-методам из МГУ им. М. В. Ломоносова, руководителей исследовательских групп по каждому компоненту Программы (ВНИРО, ИБМ, ТОИ). Планируется поэтапно объединить массивы данных по 3 направлениям программы. Сначала будут объединены массивы данных по бентосу и распределению китов (Этап 1) с целью выяснения потенциальной взаимосвязи (сопряжения, кореляции) между биомассой и наличием кормовых организмов и распределением китов. Затем в базу данных будут включены данные об акустическом поле (в виде суммарных уровней звукового давления) в качестве возможного альтернативного дополнительного поясняющего параметра. Вводное совещание по выполнению комплексного анализа состоялось в сентябре 2011 г. Был также составлен первоначальный план работ (Этап 1) и ведется работа по анализу многолетних данных.

4. Текущие статистические анализы – финансируются обеими Компаниями и выполняются под руководством исследователей, участвующих в совместной программе мониторинга. Целью является изучение массивов данных (например, данных фотоидентификации) в полном объеме, с применением более простых

аналитических методов. При наличии времени будут проведены исследования физической кондиции китов, биографий отдельных особей и т.д. Результаты ожидаются в ходе дальнейших работ в рамках совместной программы мониторинга.
9. ЦИТИРУЕМАЯ ЛИТЕРАТУРА

Глава 1. Введение

Глава 3. Акустические исследования

Глава 4. Исследования бентоса и корма серых китов
Маминов, М. К., Блохин, С. А. 2004. Встречаемость серого кита (Eschrichtius robustus) в прибрежных водах юга Дальнего Востока. Морские млекопитающие Голарктики (Сборник научных трудов по материалам 3-й международной конференции. Коктебель, Крым, Украина. 11-17 октября 2004 г) - с. 362-368.

Фадеев В.И. 2009. Состояние бентоса и кормовой базы в районах нагула охотско-корейской популяции серых китов в 2008 г. Отчет Института биологии моря ДВО РАН, Владивосток, Россия, для компаний «Эксон Нефтегаз Лтд» и «Сахалин Энерджи Инвестишн Компани Лтд», Южно-Сахалинск, Россия - ... с.

Глава 5. Поведение серых китов

Глава 6. Распределение и численность серых китов

Глава 7. Фотоидентификационные исследования серых китов

Яковлев Ю.М., Тюрнева О.Ю. и Вертянкин В.В. 2007. Фотоидентификация серых китов охотско-корейской популяции (Eschrichtius robustus) у северо-восточного побережья о. Сахалин и юго-

Часть 10. Приложение A

Перечень общедоступных материалов, относящихся к Программе мониторинга охотско-корейской популяции серого кита у северо-восточного побережья о. Сахалин, осуществляемой совместно компаниями ЭНЛ и "Сахалин Энерджи"
Акустические исследования

Научные статьи
Борисов С.В., Ковзель, Д.Г., Рутенко, А.Н., Ущиповский, В.Г. Автономная гидроакустическая станция с радиоканалом для акустических измерений на шельфе, Приборы и техника эксперимента, 2008, вып. 51, № 5, с. 762–767.
Веденев, А.И. Акустический мониторинг района нагула серых китов (Eschrichtius robustus) в период установки нефтяной платформы на шельфе о. Сахалин, Морские млекопитающие Голарктики, Москва, 2006.
Веденев, А.И. Контроль критической дозы шума в районе нагула Охотоморской популяции серых китов (Eschrichtius robustus) как защитная мера от акустического воздействия на млекопитающих при строительстве морских нефтепромыслов, Морские млекопитающие Голарктики, Москва, 2006.
Гриценко, А.В., Круглов, М.В., Рутенко, А.Н. Организация и результаты экологического мониторинга антропогенных акустических шумов на шельфе о. сахалин, Сборник трудов XX сессии Российского акустического общества, Москва, 2008.
Ковзель, Д.Г., Рутенко, А.Н. Автономная акустическая станция с цифровым радиотелеметрическим каналом для мониторинга сейсмоакустических сигналов на шельфе, Приборы и техника эксперимента, 2009, вып. 52, № 6, с. 857–861.
Круглов, М.В., Рутенко, А.Н., Ракка, Р. Построение экспериментальных оценок уровней акустических шумов на границах районов кормления серых китов во время будущей индустриальной

Эксон Нефтегаз Лимитед 57 Сахалин Энерджи Инвестмент Компани, Лтд.

Рутенко, А.Н. Результаты акустического мониторинга индустриальных шумов на шельфе о. Сахалин в районах летнего кормления серых китов, Сборник трудов XVII сессии Российского акустического общества, Москва, 2005.

Рутенко, А.Н., Гриценко, В.А. Мониторинг антропогенных шумов на шельфе о. Сахалин, «Акустическая физика», 2010, вып. 56, № 1, с. 72–76.

Рутенко, А.Н., Ракка Р. Организация и результаты акустического мониторинга во время постановки оснований нефтедобывающих платформ Лункская и ПА-Б на шельфе о. Сахалин, Сборник трудов XVII сессии Российского акустического общества, Москва, 2005.

Рутенко, А.Н., Результаты экспериментальных исследований внутренних волн на шельфах охотского и японского морей и их влияния на распространение звука, Сборник трудов XX сессии Российского акустического общества, Москва, 2008.

Рутенко, А.Н., Ущиповский В.Г. Результаты натурных исследований пространственных характеристик функции потерь в акустическом поле, формируемом низкочастотным излучателем на шельфе, Сборник трудов XX сессии Российского акустического общества, Москва, 2008.

Рутенко, А.Н., Ущиповский, В.Г. Пространственные характеристики функции потерь в акустическом поле, генерируемом широкополосным цилиндрическим излучателем в мелком море, Сборник трудов XXIII сессии Российского акустического общества, Москва, 2011.

Исследования бентоса

Тезисы для конференций

Demchenko N.L. The dynamics of quantitative characteristics of three dominant benthic amphipod species in the Piltun region (north-eastern part of Sakhalin Island, the sea of Okhotsk, XIIIth International Colloquium on Amphipoda, Tihany, Hungary, 2007.

Родькина С.А., Кияшко, С.И., Демченко Н.Л., Фадеев, В. И. Данные о пище амфипод по объединенным данным анализа жирных кислот и стабильных изотопов. Первый Дальневосточный международный симпозиум по медицинским и биологическим наукам, Владивосток, Россия, 2008.

Научные статьи

Презентации

Исследования распределения

Научные статьи

Блохин, С.А. Сроки пребывания серого кита (Eschrichtius robustus) у северо-восточного побережья Сахалина, их численность и поведение в начале и конце времени пребывания в районе зал. Пильтун. Морские млекопитающие Голарктики. Москва, 2004.

Маминов, М.К., Блохин, С. А. Встречаемость серого кита (Eschrichtius robustus) в прибрежных водах юга Дальнего Востока, Морские млекопитающие Голарктики, Москва, 2004.

Фотоидентификация

Тезисы для конференций

Tombach Wright, C., Tyurneva O.Yu., Yakovlev Yu.M. Anomalous skin conditions observed on western gray whales (Eschrichtius robustus) in northeastern Sakhalin, Russia, 2002-2006.
Тюрнева О.Ю., Яковлев Ю.М., Томбач У.Р., Кает К.:
Application of photo identification to study body condition of western gray whales (Eschrichtius robustus) in northeastern Sakhalin, Russia, 2003-
2006.

Тюрнева, О.Ю., Вертянкин, В.В. Яковлев, Ю.М. Владимиров, В.А. и Бурканов, В.Н.: 2007 ,
“Occurrence of gray whales (Eschrichtius robustus) of endangered western population at east coast of Kamchatka Peninsula”. In: The changing North Pacific: previous pattern, future projections, and ecosystem impact. 16 annual meeting PICES, 26 October – 5 November, 2007, Victoria, Canada.
p.153.

Тюрнева О.Ю., Яковлев Ю.М., Вертянкин В.В., Gailey G., Сыченко О. и Мюр J.E. Discovering a new feeding area for calf-cow pairs of Western Gray Whales on the southeast shelf of Kamchatka in 2009 and their utilization of different feeding regions within one season. PICES 2010, Portland, OR, USA.

Тюрнева О.Ю., Яковлев Ю.М., Вертянкин В.В., Гэйли Г., Сыченко О., Муир Дж.Э., Сыченко О. Открытие нового района нагула серых китов в 2009 и использование китами различных районов нагула в пределах одного сезона. Конференция PICES 2010, Портленд, Орегон, США.

Яковлев Ю.М., Тюрнева О.Ю., Вертянкин В.В., Сыченко О., Муир Дж.Э. Открытие нового района нагула пар матер-детеныш из охотско-корейской популяции серых китов на юго-восточном шельфе Камчатки в 2009 и использование китами различных районов нагула в пределах одного сезона. Конференция PICES 2010, Портленд, Орегон, США.

Яковлев Ю.М., Тюрнева О.Ю., Гэйли Г., Сыченко О., Муир Дж.Э. Открытие нового района нагула серых китов в 2009 и использование китами различных районов нагула в пределах одного сезона. Конференция PICES 2010, Портленд, Орегон, США.

Яковлев Ю.М., Тюрнева О.Ю., Гэйли Г., Сыченко О., Муир Дж.Э. Открытие нового района нагула серых китов в 2009 и использование китами различных районов нагула в пределах одного сезона. Конференция PICES 2010, Портленд, Орегон, США.

Яковлев Ю.М., Тюрнева О.Ю., Гэйли Г., Сыченко О., Муир Дж.Э. Открытие нового района нагула серых китов в 2009 и использование китами различных районов нагула в пределах одного сезона. Конференция PICES 2010, Портленд, Орегон, США.

Яковлев Ю.М., Тюрнева О.Ю., Гэйли Г., Сыченко О., Муир Дж.Э. Открытие нового района нагула серых китов в 2009 и использование китами различных районов нагула в пределах одного сезона. Конференция PICES 2010, Портленд, Орегон, США.

Яковлев Ю.М., Тюрнева О.Ю., Гэйли Г., Сыченко О., Муир Дж.Э. Открытие нового района нагула серых китов в 2009 и использование китами различных районов нагула в пределах одного сезона. Конференция PICES 2010, Портленд, Орегон, США.

Яковлев Ю.М., Тюрнева О.Ю., Гэйли Г., Сыченко О., Муир Дж.Э. Открытие нового района нагула серых китов в 2009 и использование китами различных районов нагула в пределах одного сезона. Конференция PICES 2010, Портленд, Орегон, США.

Яковлев Ю.М., Тюрнева О.Ю., Гэйли Г., Сыченко О., Муир Дж.Э. Открытие нового района нагула серых китов в 2009 и использование китами различных районов нагула в пределах одного сезона. Конференция PICES 2010, Портленд, Орегон, США.

Яковлев Ю.М., Тюрнева О.Ю., Гэйли Г., Сыченко О., Муир Дж.Э. Открытие нового района нагула серых китов в 2009 и использование китами различных районов нагула в пределах одного сезона. Конференция PICES 2010, Портленд, Орегон, США.

Яковлев Ю.М., Тюрнева О.Ю., Гэйли Г., Сыченко О., Муир Дж.Э. Открытие нового района нагула серых китов в 2009 и использование китами различных районов нагула в пределах одного сезона. Конференция PICES 2010, Портленд, Орегон, США.

Яковлев Ю.М., Тюрнева О.Ю., Гэйли Г., Сыченко О., Муир Дж.Э. Открытие нового района нагула серых китов в 2009 и использование китами различных районов нагула в пределах одного сезона. Конференция PICES 2010, Портленд, Орегон, США.

Яковлев Ю.М., Тюрнева О.Ю., Гэйли Г., Сыченко О., Муир Дж.Э. Открытие нового района нагула серых китов в 2009 и использование китами различных районов нагула в пределах одного сезона. Конференция PICES 2010, Портленд, Орегон, США.

Яковлев Ю.М., Тюрнева О.Ю., Гэйли Г., Сыченко О., Муир Дж.Э. Открытие нового района нагула серых китов в 2009 и использование китами различных районов нагула в пределах одного сезона. Конференция PICES 2010, Портленд, Орегон, США.

Яковлев Ю.М., Тюрнева О.Ю., Гэйли Г., Сыченко О., Муир Дж.Э. Открытие нового района нагула серых китов в 2009 и использование китами различных районов нагула в пределах одного сезона. Конференция PICES 2010, Портленд, Орегон, США.

Яковлев Ю.М., Тюрнева О.Ю., Гэйли Г., Сыченко О., Муир Дж.Э. Открытие нового района нагула серых китов в 2009 и использование китами различных районов нагула в пределах одного сезона. Конференция PICES 2010, Портленд, Орегон, США.
Яковлев, Ю.М., Тюряева, О.Ю., Вертянкин, В.В., Гэйли Г., Сыченко, О. Открытие нового района нагула пар мать-детеныш находящейся под угрозой исчезновения охотско-корейской популяции серых китов *Eschrichtius robustus* на юго-восточном шельфе Камчатки в 2009 г.

Отчеты

Эксон Нефтегаз Лимитед 64 **Сахалин Энерджи Инвестмент Компани, Лтд.**
Федерация // Тихоокеанский океанологический институт ДВО РАН, отчет для компаний «Эксон Нефтегаз Лимитед» и «Сахалин Энерджи Инвестиции Компани».

Гэйли, Г., Сыченко, О. Вюрсиг, Б. Глава 5 в отчете Программа изучения и мониторинга Охотско-корейской популяции серых китов в 2009 г., о. Сахалин, Россия. Том II. Результаты и их обсуждение.

Meier, S., J. Lawson, S. Yazvenko, A. Perlov, M. Maminov, S.R. Johnson, Y. Yakovlev, M. Newcomer, P.
Перлов, С.Р. 2002. Программа снижения воздействия на морских млекопитающих и мониторинга
Meier, S., J. Lawson, S. Yazvenko, A. Perlov, M. Maminov, S.R. Johnson, Y. Yakovlev, M. Newcomer, P.
literature/information regarding marine mammals in the vicinity of Sakhalin Island, Okhotsk Sea, Russia. Rep. by LGL Limited, Sidney, BC, for AGRA Earth & Environmental, Calgary AB. 31 p. + tables and figs.
Перлов, А.С., Владимиров, В., Ревякина З.В., Исмаил-Заде Ж., Язвенко, С.Б., Джонсон С.Р. (1997) Обзор литературы и данных о морских млекопитающих в районе о. Сахалин, Охотское море, Россия. Отчет компании LGL Limited, Сидней, Британская Колумбия для компании AGRA Earth & Environmental, Калгари, Альберта. 31 с., с таблицами и рисунками.
(Eschrichtius robustus) offshore northeastern Sakhalin in 2002: vessel-based observations. Report by
TINRO Center, Vladivostok, Russia, for Exxon Neftegas Limited, Yuzhno-Sakhalinsk, Russia and Sakhalin Energy Investment Company Limited, Yuzhno-Sakhalinsk, Russia. 28 pp. [available on the Sakhalin Energy Investment Company website http://www.sakhalinenergy.com].
July to 7 October, 2005; Sakhalin, Russian Federation // Pacific Oceanological Institute (FEB RAS) report for Exxon Neftegas Ltd. and Sakhalin Energy Investment Co.
Рутенко, А.Н. (2006). Акустические исследования на северо-восточном шельфе о. Сахалин. Том 1:
Задачи и данные; 7 июля – 7 октября 2005 г.; о. Сахалин, Российская Федерация / Отчет Тихоокеанского океанологического института ДВО РАН для компаний «Эксон Нефтегаз Лимитед» и «Сахалин Энерджи Инвестицион Компани».

ПРИЛОЖЕНИЕ В

Распределение серых китов у северо-восточного побережья Сахалина с августа по сентябрь 2004-2010 гг. (по объединенным данным береговых и судовых учетов)
Исследования западной популяции серых китов
Сводный отчет, 2011 г.

Охотское море
Пльгунск. район нагула
Залив Пильтун
Маяк
Залив Чайво
Вал
Ныйский залив
Морской район нагула

Число китов на км² согласно анализу распределения плотности
- 0.00 - 0.01-0.25 - 0.26-0.50 - 0.51-1.00 - 1.01-2.00 - 2.01-3.00
киты, не учтённые в анализе плотности о - 1 о - 2 о - 3 о - 4 о - 5 о - 8
7 ▲ - станции берегового учета ▲ - БУ и платформы
........ - подводные т/п
Исследования западной популяции серых китов
Сводный отчет, 2011 г.

Приложение В

Охотское море
Пильтунск. район нагула
Залив Пильтун
Маяк
Залив Чайво
Вал
Ныйский залив
Морской район нагула

Число китов на км² согласно анализу распределения плотности
-0.00 -0.01-0.25 -0.26-0.50 -0.51-1.00 -1.01-2.00 -2.01-3.00
киты, не учтенные в анализе плотности
-1 -2 -3 -4 -5 -8
7 ▲ - станции берегового учета ▲ - БУ и платформы
............ - подводные т/п